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These are lecture notes on sieve methods in arithmetic statistics which were used for a
graduate seminar at Princeton University in Spring 2024. Two problems from arithmetic
statistics are studied: the density of squarefree values of polynomials, and the number of
cubic abelian trace-one polynomials with bounded integer coefficients.
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1 Squarefree values of polynomials

1.1 Motivation

Let f(x1, . . . , xm) be a polynomial with integer coefficients and for a ∈ Zm let |a| =

max(|a1|, . . . , |am|). Assume that f is squarefree.

The (natural) density of squarefree values of f is the limit

lim
X→∞

P(f(a) is squarefree : a ∈ Zm, |a| < X) = lim
X→∞

#{a ∈ Zm : |a| < X, f(a) squarefree}
(2X + 1)m

.

Conjecturally, this density exists and is positive.

Squarefree values of polynomials are important in arithmetic statistics. We are often inter-
ested in prehomogeneous spaces: a linear representation V of an algebraic group with a dense
open orbit whose points parametrize some objects of arithmetic interest (usually orders or
curves with some structure), and there is a natural discriminant-like polynomial f : V → A1

such that {f 6= 0} is the open orbit.

Intuitively, the values of f measure how closely a point approaches the discriminant locus
{f = 0} ⊂ V , and squarefree values of f are attained at points which do not get too close
to the discriminant locus (in the sense of heights).

For instance, the space V = Sym3(A2) of binary cubic forms parametrizes cubic orders with
a Z-basis of the form (1, α, β) satisfying αβ ∈ Z. The discriminant polynomial is given by

f(ax3 + bx2y + cxy2 + dy3) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

In the context of van der Waerden’s conjecture, we are interested in the affine space V of all
monic polynomials of degree n, and the discriminant polynomial

f(xn + a1x
n−1 + · · ·+ an) = disc(xn + a1x

n−1 + · · ·+ an).

Recall that polynomials with small Galois group have large index, and the discriminant will
be divisible by large powers.

Those polynomials with squarefree discriminant will have Galois group Sn, and other nice
properties such as having a monogenic ring of integers.
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Squarefree discriminants correspond to the simplest type of ramification, namely two points
coming together. In moduli problems allowing for different types of ramification this typically
corresponds to the generic situation.

Remark 1.1. For a geometric analogue, consider Hurwitz spaces HR which parametrize the
set of covers of the projective line with a given ramification type R. In the analogy between
algebraic curves and number fields, the genus is analogous to log(

√
disc). By the Riemann–

Hurwitz formula,1 each critical value Q contributes∑
P/Q

1
2
(eP − 1)

to the genus of the curve. This shows that covers with ramification worse than simple are
sparse when measured by discriminant.

What is known?

First note that the density of p-squarefree values for a fixed prime p is easy to compute. This is
because whether or not p2 divides f(a) is determined by the residue a (mod p2) ∈ (Z/p2Z)m.
So

P(f(a) is p-squarefree) = lim
X→∞

P(f(a) is p-squarefree : a ∈ Zm, |a| < X) = 1− cp/p
2m

where cp = #{a ∈ (Z/p2Z)m : f(a) ≡ 0 (mod p2)}. This extends to squarefree conditions at
finitely many primes by the Chinese Remainder Theorem.

Conjecturally, for almost all a we expect the divisibilities of f(a) at different primes to
be independent quantities. This would imply that the density of squarefree values for a
squarefree polynomial f ∈ Z[x1, . . . , xm] is equal to∏

p

P(f(a) (mod p2) is squarefree) =
∏
p

(1− cp/p
2m).

Assuming the abc conjecture, Granville [Gra98] showed this formula holds for one variable
polynomials. Poonen has shown the formula for multivariable polynomials from the abc
conjecture, however with a weaker notion of density.

Remark 1.2. Does the multivariate case reduce to the one variable case? Consider the two
1for a nonconstant separable morphism f : X → Y of smooth projective curves, we have 2gX − 2 =

(2gY − 2) deg f +
∑

P (eP − 1).
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variable case f(x, y), supposing we know the one variable case to be true. Write fa(y) =

f(a, y). Then ∑
−X/2≤a,b≤X/2

1sqf(f(a, b)) =
∑

−X/2≤a≤X/2

(Xδfa + o(X))
?
= X2δf + o(X2).

So we may relate the problem of squarefree densities for f(x, y) to an averaged problem for
the family of polynomials {fa : a ∈ Z}. The question is whether the one-variable densities
average to the two-variable density:

1

X

∑
−X/2≤a≤X/2

δfa
?
= δf + o(1).

This is true (for trivial reasons) for the local densities, but for the global densities it is unclear
why the average of the product of local densities should be equal to the product over the
averages of the local densities.

Conjecture 1.3 (abc conjecture. Oesterlé, Masser, Szpiro). Fix ε > 0. If a, b, c are coprime
positive integers satisfying a+ b = c, then

c�ε N(a, b, c)1+ε

where N(a, b, c) is the product of the distinct primes dividing abc.

For one variable polynomials, degrees 1 and 2 are relatively easy. Degree 3 was proven by
Hooley [Hoo68]. Degrees ≥ 4 are open.

For binary homogeneous forms, it is known up to degree 6 by Greaves [Gre92]. Degrees ≥ 7

are open.

For the discriminant of monic, resp. general polynomials of a fixed degree, it was proven by
Bhargava–Shankar–Wang [BSW22a], resp. [BSW22b].

But in most cases it is even unknown whether a given squarefree polynomial takes infinitely
many squarefree values, e.g. x4 + 2.

The density of squarefree numbers

Reference: [Bha21, 13]. An instructive case is estimating the number of squarefree numbers
between 1 and X, corresponding to f(x) = x.
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Theorem 1.4. The natural density of integers that are squarefree is 1/ζ(2) = 6/π2 =

.6079 . . ..

In this one variable setting our heuristic is that for integers, the property of being squarefree
satisfies a “local-to-global principle”, so the probability of being squarefree is∏

p

(1− 1/p2) = 1/ζ(2).

Proof. Let Sp = {m : p2 - m}. By the Chinese Remainder Theorem, for any Y > 0 we have
that

lim
X→∞

#{m ∈ ∩p<Y Sp : |m| < X}
#{m : |m| < X}

=
∏
p<Y

(1− 1/p2).

That is to say, the Chinese Remainder Theorem assures independence for a finite set of
primes {p : p < Y }. Since

∩p<Y Sp ⊃ ∩pSp = {m : m squarefree},

we trivially get the upper bound

lim sup
X→∞

#{m squarefree : |m| < X}
#{m : |m| < X}

≤
∏
p<Y

(1− 1/p2)

so taking Y to infinity shows that ζ(2)−1 is the correct upper bound.

For the lower bound, observe that⋂
p<Y

Sp ⊂ {m : m squarefree} ∪
⋃
p≥Y

Sc
p

since any integer in the left-hand set is either squarefree or divisible by p2 for some p ≥ Y .

The number of m ∈ Z divisible by p2 with |m| < X is 2X/p2 +O(1). So

#{m ∈ ∩p<Y Sp : |m| < X}
#{m : |m| < X}

≤ #{m squarefree : |m| < X}
#{m : |m| < X}

+
∑

√
X>p≥Y

2X/p2 +O(1)

#{m : |m| < X}

≤ #{m squarefree : |m| < X}
#{m : |m| < X}

+
∑

√
X>p≥Y

(1/p2 +O(1/X)).
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Taking the lim inf as X → ∞ shows that

∏
p<Y

(1− 1/p2) ≤ lim inf
X→∞

#{m squarefree : |m| < X}
#{m : |m| < X}

+
∑
p≥Y

1/p2.

(Note the second term on the right is finite.) Thus taking Y → ∞ shows the correct lower
bound.

In fact, we can get a power-saving error term: the number of integers n with |n| < X that
are squarefree is

X/ζ(2) +O(
√
X).

Let q denote a squarefree integer and let Wq = ∩p|qS
c
p denote the set of positive integers

divisible by q2. Write W (X) for #{x ∈ W : |x| < X}. By the inclusion-exclusion principle,
we have that

#{m ∈ S : |m| < X} = W1(X)−
∑
p

Wp(X) +
∑
p,p′

Wpp′(X)−
∑
p,p′,p′′

Wpp′p′′(X) + · · ·

=
∑

1≤q≤
√
X

µ(q)Wq(X)

where p, p′, p′′, . . . denote distinct primes. (This is sometimes called the “inclusion-exclusion
sieve”.) This expresses S in terms of the simpler sets Wq with density 1/q2. Then∑

1≤q≤
√
X

µ(q)Wq(X) =
∑

1≤q≤
√
X

µ(q)(X/q2 +O(1))

=

 ∑
1≤q≤

√
X

µ(q)/q2

X +O(
√
X)

=

(
∞∑
q=1

µ(q)/q2

)
X +O

√
X +

∞∑
q=

√
X

X/q2


= ζ(2)−1X +O(

√
X).

Note that the trivial bound
∑Y

q=1 µ(Y ) = O(Y ) can be improved to
∑Y

q=1 µ(Y ) = o(Y ), and
even O(Y 1/2+ε) under the Riemann hypothesis.

The exact same argument proves that

#{m is k-powerfree : |m| < X} = ζ(k)−1X +O(X1/k).
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Conjecturally, the error term is O(X1/(2k)+ε).

The best known error term, assuming the Riemann hypothesis, is O(X11/35+ε) due to [Liu16].

1.1.1 Zeta function methods

When we have a good handle on the Dirichlet series associated to the set whose density we
want to bound, it is possible to use Tauberian methods.

For k-powerfree integers (k ≥ 2), observe that

∑
n≥1, k-p.f.

n−s =
∏
p

(
1 + p−s + · · ·+ p−(k−1)s

)
=
∏
p

1− p−ks

1− p−s
=

ζ(s)

ζ(ks)
.

When the generating Dirichlet series of a set has meromorphic continuation beyond the
region of absolute convergence and does not grow too fast in vertical strips in the region of
meromorphic continuation, Tauberian theorems express terms in the asymptotic expansions
for #{m is k-powerfree : |m| < X} in terms of polar data of the Dirichlet series.

From this explicit formula, we see that the poles with positive real part are at s = 1 with
residue 1/ζ(k) (the leading term in the asymptotic expansion) and s = ρ/k where ρ is any
nontrivial zero of ζ(s).

1.2 Strong/weak multiples

Our approach will be to separate the inputs a where p2 divides f(a) into two kinds of points,
and then to handle these with different methods.

Let f ∈ Z[x1, . . . , xm] and a ∈ Zm. Suppose the value f(a) is exactly divisible by pk for some
k ≥ 2. We associate to a the smallest integer j satisfying

a′ ≡ a (mod pj) =⇒ f(a′) ≡ f(a) (mod pk),

and say that pk divides f(a) for mod pj reasons.

Definition 1.5. If pk divides f(a) for mod p reasons, then we say that f(a) is strongly a
multiple of pk, otherwise if j ≥ 2 we say f(a) is weakly a multiple of pk.

Geometrically speaking, when f(a) is exactly divisible by pk for k ≥ 2 it means that the
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section determined by a intersects with the hypersurface {f = 0} over p, and even remains
close to X in a neighborhood.

A large j (j ≈ k) means that {f = 0} has large curvature near the intersection point,
whereas a low value of j (j ≈ 1) means {f = 0} has less than expected curvature. Therefore
we expect that f changes slowly p-adically near strong multiples.

In the van der Waerden proof the following proposition came up for the special case k = 2.

Proposition 1.6. Assume p > k. If f is strongly a multiple of pk at a = (a1, . . . , an) ∈ Zn,
then

f(a) ≡ ∂f

∂xn
(a) ≡ · · · ≡ ∂k−1f

∂xk−1
n

(a) ≡ 0 (mod p).

Remark 1.7. If not all the coefficients of f vanish at a as a polynomial in xn modulo p, then
the conclusion of the proposition is equivalent to the polynomial f(a1, . . . , an−1, xn) (mod p)

having a root of multiplicity k at xn ≡ an (mod p). (This equivalence requires p > k, e.g.
for k = p every derivative of f = xk is zero mod p.)

Proof. We will prove something stronger: for each integer 1 ≤ j < k,

∂jf

∂xjn
(a) ≡ 0 (mod pk−j).

We may by translating suppose that a = 0, and without loss of generality take n = 1. We
have the finite Taylor expansion:

f(x) = f(0) + f ′(0)x+ · · · .

Let z = px, in which case each coefficient with respect to z is a p-adic integer and we may
reduce the Taylor expansion mod pk. By assumption,

f(0) + f ′(0)pz + · · · ≡ f ′(0)pz + · · · ≡ 0 (mod pk).

If k = 1 we are done, and otherwise this shows that

f ′(0)pz ≡ 0 (mod p2)

for all z ∈ Z/pkZ and thus p divides f ′(0). If k = 2 we are done, and otherwise

f ′(0)pz + 1
2!
f ′′(0)p2z2 ≡

(
f ′(0)

p
+ 1

2!
f ′′(0)z

)
p2z ≡ 0 (mod p3)
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for all z ∈ Z/pkZ. This shows that the polynomial(
f ′(0)

p
+ 1

2!
f ′′(0)z

)
z (mod p)

evaluates to zero on any z ∈ Z/pZ. Since p > k ≥ 3 > 2, this shows that each coefficient
must be divisible by p. In particular, p2 divides f ′(0) and p divides f ′′(0). If k ≥ 4 then the
same argument shows that p3 divides f ′(0), p2 divides f ′′(0), and p divides f ′′′(0), and so
on.

Corollary 1.8. Let f be an irreducible integral polynomial in n ≥ 2 variables. Then there
is a subvariety Y of An

Q of codimension two such that for all but finitely many primes p,

{a ∈ Zn | f is strongly a multiple of p2 at a} ⊆ {a ∈ Zn | a (mod p) ∈ Y (Fp)}.

Proof. If f is linear, then f cannot be a strong multiple of p2 at a, so the left-hand set is
empty and the assertion is vacuously true.

If f is nonlinear, there is some coordinate, say xn, such that ∂nf is a nonconstant polynomial.
Let Y = {f = ∂nf = 0} ⊂ An

Q. The proposition shows that the left-hand set is contained in
the right-hand set. The restriction of ∂nf to the irreducible hypersurface {f = 0} cannot be
constant (otherwise f would divide ∂nf − c for some constant c which would imply ∂nf = c

everywhere). Therefore Y is codimension two in An
Q.

The property of a lattice point of reducing mod p to a point on a subvariety of large codimen-
sion is precisely what the geometric sieve constrains. Thus the number of strong multiples
of p2 can be bounded by the geometric sieve, however the weak multiples typically require
ad hoc arguments.

Example 1.9. Let f = x1x3 + x2x
2
3 and a = (p, p, p). Then for any integers u, v, w divisible

by p, f(p+ u, p+ v, p+ w) is O(p2), so f is a multiple of p2 at a for mod p2 reasons.

f(x1, p, p) = px1 + p3, ∂1f(x1, p, p) = p,

f(p, x2, p) = p2 + p2x2, ∂2f(p, x2, p) = p2,

f(p, p, x3) = x3p+ x23p, ∂3f(p, p, x3) = p+ 2x3p.

We see that all the partials are divisible by p.

Exercises: Let f ∈ Z[x] be monic. Prove the following:

8



1. Prove or disprove: if f(k) is divisible by a square for all k ∈ Z, then f(x) ∈ Z[x] is
divisible by the square of an irreducible polynomial in Z[x].

2. The discriminant of f is a multiple of p2 for mod p reasons if and only if f (mod p)

has a root of multiplicity at least 3 or two roots of multiplicity at least 2.

3. The discriminant of f is a multiple of p2 for mod p2 reasons if and only if there exists
k ∈ Z such that f(x+ k) has constant coefficient divisible by p2 and linear coefficient
divisible by p.

4. Use the same technique as we did for f(x) = x to determine the density of squarefree
values of a monic squarefree quadratic polynomial f(x) ∈ Z[x].

1.3 The geometric sieve

What is a sieve? Generally speaking, a sieve is an upper bound for the number of rational
points of bounded height which satisfy specified local conditions. Typically this means that
we want to find good upper bounds for the size of sets of the form

{a ∈ Zn : |a| < X, a (mod q) ∈ Cq for all prime powers q}

where Cq ⊂ (Z/qZ)n is some subset of local conditions at the prime power q. There are many
different kinds of sieves depending on what sort of information we have about the Cq’s.

The following sieve is due to Manjul Bhargava [Bha14], building on work of Ekedahl [Eke91].
We will call it the “geometric sieve”.

Theorem 1.10 ( [Bha14], slide 159). Fix an integer 2 ≤ k ≤ n. Let B be a compact region
in Rn having finite measure, and let Y be any closed subvariety of An

Q whose irreducible
components have codimension at least k. Let r and M be positive real numbers. Then as r
and M go to infinity, possibly independently, we have that

#{a ∈ rB ∩ Zn | a (mod p) ∈ Y (Fp) for some prime p > M}

= O

(
rn

Mk−1 logM
+ rn−k+1

)
where the implied constant depends only on B and on Y .
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The proof uses elimination theory: algebraic techniques from the 19th century for eliminating
variables from generating sets of ideals in polynomial rings.

1.3.1 Resultants

The resultant is a computational tool for finding equations of projections of intersections of
hypersurfaces.

Let f = a0x
d + a1x

d−1 + · · ·+ ad and g = b0x
e + b1x

e−1 + · · ·+ be be nonzero polynomials of
degrees d and e, respectively, with coefficients in a unique factorization domain A. Assume
f and g are not both constant. Let Pi denote the free A-module of rank i generated by
polynomials over A of degree < i.

The resultant Res(f, g) of f and g is defined to be the determinant of the map

Pe × Pd → Pd+e

(P,Q) 7→ fP + gQ.

It is equal to the (d+ e)× (d+ e) determinant

Res(f, g) = det



a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
... ... . . . a0

... ... . . . b0

ad ad−1 · · · ... be be−1 · · · ...
0 ad

. . . ... 0 be
. . . ...

... ... . . . ad−1
... ... . . . be−1

0 0 · · · ad 0 0 · · · be


where there are e columns with a’s and d columns with b’s. In the degenerate case when
f and g are both nonzero constants, we set Res(f, g) = 1. The resultant is thus an integer
polynomial in the coefficients of f and g, defined whenever f, g 6= 0.

The key properties of the resultant: (assume f and g not both constant)

1. Res(f, g) = 0 if and only if f and g have a nonconstant common factor in A[x].

2. Res(f, g) = fP + gQ for some polynomials P ∈ Pe and Q ∈ Pd (these are uniquely
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Figure 1: The intersection V (x2+y2+z2−2)∩V (x3+y2−z2) and two of the three resultants.
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determined if f and g are coprime).

Note that (2) is a strong form of the gcd property of PIDs: when Res(f, g) 6= 0 we can write
1 = fP0 + gQ0 for P0, Q0 ∈ Frac(A)[x], which however only shows that

Res(f, g) = fP + gQ

for polynomials P,Q ∈ Frac(A)[x].

The resultant can be used to eliminate variables from generating sets of ideals, at the cost
of potentially enlarging the variety.

Lemma 1.11. Let f1, . . . , fk ∈ k[x1, . . . , xn] = A[xn] be nonconstant polynomials where
A = k[x1, . . . , xn−1] and k is a field. Then

V (f1, . . . , fk) ⊂ V (Resxn(f1, fk), . . . ,Resxn(fk−1, fk), fk).

Proof. By the second property of the resultant, there are polynomials Pj and Qj for each
1 ≤ j < k such that Resxn(fj, fk) = fjPj + fkQj. This shows that

(Resxn(f1, fk), . . . ,Resxn(fk−1, fk), fk) ⊂ (f1, . . . , fk)

which proves the containment of the associated affine varieties.

The idea is that these k − 1 resultants are regular functions on An−1 which vanish on the
image of V (f1, . . . , fk) under the projection map An → An−1 : (a1, . . . , an) 7→ (a1, . . . , an−1).

Example 1.12. Let f = xy − 1 and g = x2 + y2 − 4. Then

Resx(f, g) = det

 y 0 1

−1 y 0

0 −1 y2 − 4

 = y4 − 4y2 − 1.

By solving for the roots of the resultant y4 − 4y2 − 1 = 0 we can find the y-coordinates of
the solutions to f = g = 0.

[Draw picture of circle of radius 2, the hyperbola xy = 1, and four horizontal lines at the
intersection points]

In this example we actually have equalities V (f, g) = V (Res(f, g), f) = V (Res(f, g), g).
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1.3.2 Proof of the geometric sieve

Lemma 1.13 ( [Bha14], slide 160). Let B be a compact region in Rn having finite measure,
and let Y be any closed subscheme of An

Z of codimension k ≥ 1. Then

#{a ∈ rB ∩ Y ∩ Zn} = O(rn−k)

where the implied constant depends only on B and on Y .

We will give an elementary proof using resultants. Later we’ll see how this bound can be
improved using the large sieve.

Proof. The proof is by induction on n.

Without loss of generality, we may assume Y is the vanishing locus of polynomials f1, . . . , fk ∈
Z[x1, . . . , xn] since every irreducible component of Y is contained in such an intersection.

By the lemma, we may assume f1, . . . , fk−1 are independent of xn. If fk is also independent
of xn then the result follows by induction.2

Let h(x1, . . . , xn−1) be the leading coefficient of fk as a polynomial in xn. We may assume h
is not identically zero on Y .

Let π : An → An−1 be the projection map to the first n − 1 coordinates. Then π(Y ∩ {h =

0}) = V (f1, . . . , fk−1, h) has codimension k in An−1, so by induction there are at most
O(r(n−1)−k) possible choices of (a1, . . . , an−1). There are r choices for an so the number of
a ∈ rB ∩ Y ∩ Zn for which h(a) = 0 is O(rn−k).

Meanwhile for any fixed a1, . . . , an−1 for which h(a) 6= 0, there are at most degxn
fk many

values of an for which fk(x1, . . . , xn) = 0. The number of such a1, . . . , an−1 which extend to
a point a ∈ rB ∩ Y ∩ Zn is at most O(r(n−1)−(k−1)) = O(rn−k) by induction applied to the
variety V (f1, . . . , fk−1).

The elementary proof of the last lemma only eliminated one variable from the presentation
of the variety. In fact, the points on the variety are determined up to finitely many choices
by a well-chosen set of dimY coordinates, by Noether’s normalization lemma. This proves
the lemma immediately.

2Get O(r(n−1)−k) by induction, and another r from the free choice of xn.
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Now we prove the geometric sieve in general.

Theorem 1.14 ( [Bha14], slide 159). Fix an integer 2 ≤ k ≤ n. Let B be a compact region
in Rn having finite measure, and let Y be any closed subvariety of An

Q whose irreducible
components have codimension at least k. Let r and M be positive real numbers. Then as r
and M go to infinity, possibly independently, we have that

#{a ∈ rB ∩ Zn | a (mod p) ∈ Y (Fp) for some prime p > M}

= O

(
rn

Mk−1 logM
+ rn−k+1

)
where the implied constant depends only on B and on Y .

Since the number of lattice points a ∈ rB ∩Zn which are in Y (Z) is O(rn−k) by the lemma,
the bound is only really concerned with lattice points which are not globally on Y . For such
points, we actually prove a slight strengthening of the theorem:

#{(a, p) : a ∈ rB ∩ Zn, a 6∈ Y (Z), a (mod p) ∈ Y (Fp) for some prime p > M}

= O

(
rn

Mk−1 logM
+ rn−k+1

)
.

We will split the left-hand set into two subsets depending on whether p ≤ r or p > r. These
cases correspond to the two summands in the bound, respectively.

For those pairs (a, p) with p ≤ r, the lattice points with a given reduction mod p are
equidistributed in the r-box, so the density is determined by the mod p density which is
bounded by the Lang–Weil estimate.

When the modulus p is larger than the sidelength r of the box, we will use induction on the
number of variables. The elimination theory shows that the coordinate projection of Y onto
the subvariety cut out by resultants is generically finite. On the open subset where the map
is finite, the last coordinate is determined up to O(1) possibilities, so using the lemma from
last time we get a bound of the form O(r(n−1)−(k−1))r = O(rn−k+1). Meanwhile the locus
where the map has positive dimensional fibers is addressed by induction since it involves
fewer variables.

Remark 1.15. Note that the bound becomes trivial for large M , namely the left-hand set
becomes empty once M � rd where d is the minimal degree of any bounding hypersurface in
An

Q for Y , for the trivial reason that a nonzero integer cannot be divisible by a larger prime.
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So the primary regime of interest are those pairs (a, p) with r � p� rd.

Proof. Suppose M is large enough so that the reduction of Y (mod p) is well-defined and
has codimension k in An

Fp
for any p > M .

First we bound the subset of pairs (a, p) satisfying p ≤ r. Since #Y (Fp) = O(pn−k) by
Lang–Weil and rB can be covered by O((r/p)n) boxes of sidelength p, it follows that the
number of a ∈ rB ∩ Zn such that a (mod p) ∈ Y (Fp) is O(pn−k)O((r/p)n) = O(rn/pk).
Summing this over p with M < p ≤ r obtains

#{(a, p) : a ∈ rB ∩ Zn, a (mod p) ∈ Y (Fp), M < p ≤ r}

=
∑

M<p≤r

O(rn/pk) � rn
∞∑

m=M+1

m−k = O

(
rn

Mk−1

)
.

Note that in the last equality we used that k ≥ 2. Being less sloppy one can get an additional
logM in the denominator.

Now we bound those pairs (a, p) with p > r. Assume without loss of generality that Y is
irreducible and has codimension k. We will prove the following stronger bound by induction
on n:

#{(a, p) : a ∈ rB ∩ Zn, p > r, a 6∈ Y (Z), a (mod p) ∈ Y (Fp)} = O(rn−k+1).

As in the proof of the lemma from last time, we may use resultants to suppose that Y is an
irreducible component of a subvariety of the form

Y ⊂ V (f1, . . . , fk−1, fk)

where f1, . . . , fk−1 do not involve the variable xn, and the leading term h of fk as a polynomial
in xn does not vanish identically on Y .

The base case is when n = k = 2. We may suppose Y = {0} in A2
Q, and want to show that

#{(a, p) : a ∈ rB ∩ Z2, p > r, a 6= 0, a ≡ 0 (mod p)} = O(r). This is trivially satisfied
because the left-hand set has only O(1) many elements.

Now suppose n ≥ 3. Let Yk−1 denote the irreducible component of V (f1, . . . , fk−1) ⊂ An
Q

which contains Y , and let Z denote the union of irreducible components of V (f1, . . . , fk−1, h) ⊂
An

Q which meet Y ∩ {h = 0}. Then Yk−1 has codimension k − 1 and Z has codimension k

15



(using that h|Y 6≡ 0). The set we are bounding is bounded by three larger sets:

{(a, p) : a ∈ rB ∩ Zn, p > r, a 6∈ Y (Z), a (mod p) ∈ Y (Fp)}

⊆ {(a, p) : a ∈ rB ∩ Zn, p > r, a ∈ Yk−1(Z), fk(a) 6= 0, fk(a) ≡ 0 (mod p)} ∪

{(a, p) : a ∈ rB ∩ Zn, p > r, a 6∈ Yk−1(Z), a (mod p) ∈ Z(Fp)} ∪

{(a, p) : a ∈ rB ∩ Zn, p > r, a 6∈ Yk−1(Z), a (mod p) ∈ Y (Fp), h(a) 6≡ 0 (mod p)}.

(The assumption that p > r will only become relevant for the last set.)

For the first larger set, there are O(r(n−1)−(k−1)) possibilities for the first n − 1 coordinates
by the lemma from last time, and then r choices for the last coordinate. Since fk(a) is not
zero and O(rO(1)), it has O(1) many prime factors greater than r, so the number of pairs in
the first set is bounded by O(r(n−1)−(k−1))rO(1) = O(rn−k+1).

For the second larger set, since a 6∈ Yk−1(Z) it also cannot be in Z(Z) as Z ⊂ Yk−1. We may
regard Z as a subvariety of An−1

Q since its k defining equations do not involve xn, in which
case the induction hypothesis gives us that the number of possibilities for the first n − 1

coordinates is O(r(n−1)−k+1). Multiplying this by r choices for the last coordinate obtains
the desired bound.

Finally for the third larger set, by the induction hypothesis applied to Yk−1, the number of
choices for b = (a1, . . . , an−1) and p is at most O(r(n−1)−(k−1)+1). Given such a pair (b, p), the
number of choices for the last coordinate an is bounded by the degree of h. Since p > r and
an = O(r), this means that in fact an is determined up to O(1) possibilities. So the total
number of pairs (a, p) in the third set is O(r(n−1)−(k−1)+1)O(1) = O(rn−k+1).

Remark 1.16. We have faithfully followed Bhargava’s proof of the geometric sieve, but we
note that like Lemma 1.13, the proof of the geometric sieve becomes somewhat easier if we
use Noether normalization in place of resultants: since the projection map is finite and not
just generically finite, there is no need to bound the second set (the “non-monic locus”).

Later on in the course we will see some applications of the geometric sieve. For now we turn
to improving the “trivial bound” given by Lemma 1.13.
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2 The large sieve

We take a detour from squarefree values of polynomials to discuss the large sieve, a popular
and useful sieve with many variants and applications. We have followed [CM06] for our
discussion of the large sieve inequality.

2.1 The large sieve inequality

The large sieve inequality was introduced by Linnik in 1941 and subsequently developed by
Rényi, Roth, Bombieri, Davenport–Halberstam, Gallagher, Montgomery–Vaughan, Selberg,
Iwaniec, and others.

Linnik originally applied the large sieve to study the size of the least quadratic non-residue
np (mod p). Vinogradov conjectured that np = O(pε), and one can show that np = O(log2 p)

assuming the generalized Riemann hypothesis. Using the large sieve, Linnik proved that the
number of primes p ≤ x for which np > pε is O(log log x).

We now state the large sieve inequality. Let S(x) be a trigonometric polynomial:

S(x) =
N∑

n=1

ane
2πinx

where N is a positive integer and a1, . . . , aN are arbitrary complex numbers normalized so
that

N∑
n=1

|an|2 = 1.

The large sieve inequality is a bound for |S(x)|2 when sampled over an arbitrary set of
distinct elements x1, . . . , xR of R/Z.

The Cauchy–Schwartz inequality implies that
∑R

r=1 |S(xr)|2 ≤ RN . This is the sharpest
bound possible for arbitrary x1, . . . , xR. Let

δ = min
r 6=s

||xr − xs||

where ||x|| denotes the distance of x to the nearest integer. We are interested in bounds
which improve as δ grows.
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Theorem 2.1 (The large sieve inequality). Let x1, . . . , xR ∈ R/Z be distinct and at least δ
apart from one another. Then

R∑
r=1

|S(xr)|2 ≤ ∆(N, δ)

where ∆(N, δ) is bounded from above by some explicit function of N and δ:

• πN + δ−1 (Gallagher 1967)

• 2max(N, δ−1) (Bombieri–Davenport 1968)

• N + 2δ−1 (Bombieri 1971)

• N + δ−1 (Montgomery–Vaughan 1973).

Remark 2.2. Bombieri–Davenport 1968 give examples in which ∆(N, δ) = N + δ−1 − 1.
[Evertse claims that Selberg actually showed the large sieve inequality with this ∆.] In 1973
Gallagher used his version of the large sieve inequality to prove that O(Hn−1/2+ε) is a valid
upper bound for the van der Waerden problem for monic degree n integral polynomials.

Surprisingly, the large sieve inequality can be regarded as a manifestation of a basic fact
from linear algebra: the norm of a bounded map T : V → W of normed linear spaces is
equal to the norm of its adjoint T ∗ : W ∗ → V ∗:

||T || = sup
||v||≤1

||Tv|| = sup
||w||≤1

||T ∗w|| = ||T ∗||.

This observation is sometimes called the “duality principle”.

2.2 The large sieve

The large sieve inequality does not apparently match our concept of a sieve. By applying
the large sieve inequality sampled at Farey fractions,3 we can obtain the large sieve which
does fit into our concept of a sieve.

This choice of sampling exploits the cancellation provided by Ramanujan sums, a particular
type of exponential sum. See [CM06, §8.2] for more details on the derivation of the large
sieve from the large sieve inequality.

3The set of all rational numbers in the real interval [0, 1] of bounded height.
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We will follow [Ser97] closely for our discussion of the large sieve. Let K be a number field
with ring of integers OK , and let Λ be a torsion free finitely generated OK-module of rank
n. Choose a norm | · | on ΛR = Λ⊗ R.

For each prime ideal p of OK , let ωp be a real number in [0, 1].

Let r ≥ 1 and Q > 0 be real numbers.

We want to bound the size of a subset X of Λ satisfying the following local constraints:

1. The set X is contained in a ball of radius r, i.e. there is some x0 ∈ ΛR such that
|x− x0| < r for every x ∈ X.

2. For every p with N(p) ≤ Q, the reduction Xp of X in Λ/Λp satisfies

#Xp ≤ (1− ωp) ·#(Λ/pΛ).

The second assumption means that a proportion ωp of the residue classes modulo p of Λ/Λp
have been “sieved out”, and are entirely missing from X.

Theorem 2.3. We have the bound

#X = O(sup(rn[K:Q], Q2n)/L(Q))

where
L(Q) =

∑
I

∏
p|I

ωp

1− ωp

and the sum is over squarefree ideals I ⊂ OK of norm ≤ Q. The implied constant depends
only on K, Λ, and the chosen norm.

Remark 2.4. The implied constant may be made explicit: it is 2n for K = Q, Λ = Zn and
| · | the sup norm.

Remarks on L(Q): The quantity L(Q) may be regarded as density-like. Consider the regime
Q2 ≈ r[K:Q], corresponding to only using the congruence constraints for OK-sublattices of Λ
with root discriminant ≤ r. For instance, if ωp = N(p)−k (k ≥ 1), then

L(Q) =
∑
I sq.f

∏
p|I

(N(p)−k +N(p)−2k + · · · ) =
∑

I:N(Irad)≤Q

N(I)−k r→∞−−−→ ζK(k)

and then rn[K:Q]/ζK(k) is the leading term, which is sharp.
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However one of the special features of the large sieve is that ωp may be as large as a positive
constant that is independent of p. We will see that this is the case for thin sets. When this
occurs, L(Q) will go to infinity with Q, and this will lead to power savings. In fact we will
show that L(Q) � Q/ logQ.

Fourier analytic interpretation: As we have seen earlier in the course, the problem of bound-
ing the size of a finite subset of lattice points X ⊂ Λ can be studied using (abelian) harmonic
analysis on the compact torus T = Λ∨

R/Λ
∨.

The basic idea is that Λ parametrizes the unitary characters χλ : T → R/Z of T (where
λ ∈ Λ), and properties of X are reflected in the properties of the function

f = 1̂X =
∑
λ∈X

χλ.

For instance, f(0) = 1̂X(0) = #X, and the size of f away from zero is a measure of
equidistribution of X. The Dirac delta function δ =

∑
λ∈Λ χλ is the extreme example.

In terms of f , the first hypothesis says that the Fourier coefficients of f vanish outside a
ball of radius r. By duality, the quotient lattice Λ/pΛ is associated to the subgroup Tp of
p-torsion points of T . The second hypothesis says that at most a proportion of 1−ωp of the
Fourier coefficients of f restricted to Tp are nonzero.

We now apply the large sieve to bound the number of integer points of bounded height in
thin sets.

3 Thin sets

The following useful concept is due to Lang and Serre.

A subset of k-points of a variety V defined over a field k is called thin if it can be covered
by a finite union of sets of the form:

• (type I) C(k) for a proper Zariski-closed subset C ⊂ V , or

• (type II) π(W (k)) for a geometrically irreducible variety W defined over k and a
generically finite dominant map π : W → V of degree ≥ 2.

(Type I sets are “small”; Type II sets are “sparse”.) If V (k) is not a thin set, then V is
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called Hilbertian (or Hilbert type). Hilbertian varieties may be regarded as having “many”
k-rational points in the sense that V (k) is Zariski dense and is not sparse.

Remark 3.1. One can show the property of being Hilbertian is a birational property.

Many Diophantine problems come down to bounding the number of rational or integral
points of bounded height in a thin set.

For instance, in the van der Waerden problem on the space V = An of degree n monic
polynomials, the subset of polynomials in V (Z) (or V (Q)) with Galois group G 6= Sn is a
thin set. (Indeed they come from rational points on another variety via the natural quotient
map π : W = An/G → An/Sn

∼= V .) Van der Waerden’s conjecture is that this thin set has
at most O(rn−1) points of height ≤ r.

The large sieve can be used to produce general bounds for the number of rational/integral
points in a thin set of bounded height. The idea is that for an affine variety Y of dimension
d, one may choose d linear coordinates x1, . . . , xd ∈ O(Y ) so that the projection map π =

(x1, . . . , xd) : Y → Ad is finite. If Y is nonlinear, then π will have degree ≥ 2. This reduces
the problem of bounding integer points in a thin set of bounded height in an abstract variety
to bounding a thin set A of lattice points of bounded height in affine space.

Let A be a thin subset of Od
K .

Theorem 3.2 (S. Cohen). #{a ∈ A : |a| < r} = O(r(d−1/2)[K:Q] log r).

Remark 3.3. [Ser97] improves this to logγ r in place of log r for some γ < 1.

Corollary 3.4. Let K be a number field. The number of monic degree d polynomials with
coefficients in OK, Galois group not Sd, and height ≤ r is O(r(d−1/2)[K:Q] logγ r).

(A possible height is |td + a1t
d−1 + · · ·+ ad| = maxk,σ : K→C |σak|.)

We will show, using an amplification of Lang–Weil, that the reductions modulo p of a thin
set are constrained a priori, with ωp which are independent of p. This provides the necessary
data to apply the large sieve and get a power savings to prove this theorem.

Let V be a geometrically irreducible variety over a finite field Fv. Recall the Lang–Weil
estimate:

#V (Fv) = (Nv)dimV +O((Nv)dimV− 1
2 ).

This estimate suffices to bound the image of reduction of a Type I set mod v, but for type
II thin sets we will require a more precise result.
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Let π : W → V be a finite étale morphism of geometrically irreducible smooth varieties over
Fv with deg π = m ≥ 2.

Theorem 3.5 (Lang–Weil for type II thin sets). If the Galois closure of W/V is geometrically
irreducible, then

#π(W (Fv)) ≤
(

dm−1
dm

)
(Nv)dimV +O((Nv)dimV−1/2)

where dm is m(m− 2)!.

The important feature of this estimate is that the leading constant is less than 1 and inde-
pendent of v.

Proof. Let W gal → W → V be the Galois closure of W/V . Since it is geometrically irre-
ducible by assumption, we can apply Lang–Weil to |W gal(Fv)| and also the Galois group of
W/V acts freely on W gal(Fv).

(If W gal is geometrically irreducible, then W gal

Fv
is also the Galois closure of WFv

/VFv
. This

shows that the Galois group of WFv
/VFv

(the geometric monodromy group) is equal to the
Galois group of W/V . The geometric monodromy group acts freely on W gal

Fv
(decomposition

groups must be trivial), so the Galois group of W/V also acts freely on W gal.)

Write W (Fv) = A t B, where A is the image of W gal(Fv). Each point in π(A) has precisely
m points of A lying over it. Then

#π(W (Fv)) ≤ #π(A) + #π(B) ≤ 1
m
#A+#B = #W (Fv)−

(
1− 1

m

)
#A.

Putting W gal(Fv) = [W gal : W ] ·#A into the above obtains

#π(W (Fv)) ≤ #W (Fv)−
(
1− 1

m

)
[W gal : W ]−1W gal(Fv)

= #W (Fv)− (1− 1
m
)[W gal : W ]−1((Nv)dimV +O((Nv)dimV− 1

2 ))

= c(Nv)dimV +O((Nv)dimV− 1
2 )

where c = 1− (1− 1
m
)[W gal : W ]−1 = 1− (1− 1

m
) [W :V ]
[W gal:V ]

≤ 1− (1− 1
m
) m
m!
.

Then use that 1− (1− 1
m
) m
m!

= dm−1
dm

.
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3.1 Proof of Cohen’s theorem

Now we use Theorem 3.5 to prove Theorem 3.2.

Proof of Theorem 3.2. If A is a Type I thin set, then one easily proves the required bound
by induction on the dimension. So we reduce to proving the bound for a set of the form
A ∩ Od

K where A is the image of the K-points of W under π : W → V , a generically finite
dominant map with degree ≥ 2 where W is geometrically irreducible.

We apply the large sieve to the subset X = {a ∈ A ∩ Od
K : |a| < r} of the lattice Od

K in the
regime Q2 ≈ rd:

#{a ∈ A : |a| < r} ≤ cK,dr
d[K:Q]/L(Q)

where
L(Q) =

∑
N(I)≤Q
I sq.f

∏
p|I

ωp

1− ωp

and
1− ωp =

|A (mod p)|
Npd

.

Let Kπ be the maximal finite extension of K inside the Galois closure W gal of W/V . If p
is split in Kπ, then the reduction of W gal modulo p will be geometrically irreducible. Thus
by Lang–Weil for Type II thin sets (Theorem 3.5), there is a constant 0 < c < 1 such that
|A (mod p)| ≤ cNpd for all primes p which are split in Kπ. In particular, 1 − ωp ≤ c < 1

where c is independent of p for such primes.

It only remains to show that

Lemma 3.6. L(Q) � Q/ logQ.

For this lower bound, it suffices to only keep the prime ideals in the sum defining L(Q):

L(Q) ≥
∑
Np≤Q

ωp

1− ωp

.

Now observe that ∑
Np≤Q

ωp

1− ωp

�
∑
Np≤Q

p splits in Kπ

1
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By the prime number theorem,

∑
Np≤Q

p splits in Kπ

1 ∼ 1

[Kπ : K]

Q

logQ
.

This completes the proof.

3.2 p-adic and mod p densities of thin sets

Theorem 3.5 has some interesting consequences for the reduction of a thin set modulo primes.

Corollary 3.7. If Np is large and p splits completely in Kπ, then A (mod p) 6= An(Fp).

The mod p density of A (mod p) is closely related to p-adic density of A.

Definition 3.8 (WWA). Let S be a finite set of places of a number field K. A variety V

over a number field K is said to satisfy weak approximation with respect to S if the image of
V (K) →

∏
v∈S V (Kv) is topologically dense. If V satisfies weak approximation with respect

to all such S than we say V satisfies weak approximation; if there exists a finite set S0 of
places of K such that V satisfies weak approximation with respect to all finite sets of places
S with S ∩ S0 = ∅ then we say V satisfies weak weak approximation.

Example 3.9. Any K-rational variety satisfies weak approximation. Any algebraic torus
satisfies WWA but not necessarily WA.

Theorem 3.10 (Ekedahl, Colliot-Thélène). If A ⊂ V (Q) is thin, then A fails to be dense
in V (Qv) for all v in a subset of primes with positive density. In particular, WWA implies
Hilbertian.

Proof. Part I, reduction to residue fields. Either type of thin set is covered by π(W (Qv)) for
some geometrically irreducible variety W and proper morphism π : W → V . By replacing
W and V with open subsets, we can suppose W and V are regular. By ‘spreading out’ we
can define π,W, V over a nonempty open subset U of SpecZ, such that W and V are smooth
over U .

We now show that π(W (Fv)) ⊂ V (Fv) not dense =⇒ π(W (Qv)) ⊂ V (Qv) not dense.

Let v ∈ U . By smoothness, π(W (Fv)) 6= V (Fv) =⇒ π(W (Zv)) 6= V (Zv).
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By the valuative criterion for properness applied to π, z ∈ V (Zv) if and only if π−1(z) ⊂
W (Zv). So π(W (Zv)) 6= V (Zv) =⇒ π(W (Qv)) 6= V (Qv).

As π induces a topologically closed map on Qv-points, π(W (Qv)) 6= V (Qv) =⇒ π(W (Qv)) ⊂
V (Qv) not dense.

We’ve reduced to showing π(W (Fv)) 6= V (Fv) for a positive density set of v. For this we will
use an amplification of Lang–Weil for thin sets.

Part II, apply Lang–Weil and Chebotarev density. Recall we must show π(W (Fv)) 6= V (Fv)

for a positive density set of v.

By replacing W,V, U with open subsets, we may assume π is finite étale, and that Wv, Vv

are geometrically irreducible for any v ∈ U (e.g. [EGA IV3, 9.7.8]).

If the Galois closure of Wv → Vv is geometrically irreducible, the needed result follows from
Lang–Weil for type II thin sets.

More generally, the Galois closure of Wv → Vv is geometrically irreducible if and only if v is
totally split in kπ, the algebraic closure of Q in the Galois closure of Q(W )/Q(V ).

By Chebotarev’s density theorem, this occurs for all v ∈ U on a positive density subset.

Remark 3.11. This theorem has consequences for the inverse Galois problem. Let π : W → V

be a generically étale G-torsor of geometrically irreducible varieties defined over Q. If V
satisfies WWA, then there exists a Galois field extension of Q with Galois group G.

4 The density of squarefree values of invariant polyno-
mials

We return to the problem of computing the density of squarefree values of invariant poly-
nomials. Following [Bha14, §2], we outline axioms from which the correct density may be
proven.
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4.1 Hypotheses on invariant polynomials

Let V be a representation of an algebraic group G defined over Z. Let f be an integer
polynomial of degree d that is a relative invariant for the action of G on V and whose
squarefree values we wish to extract. Let m be the dimension of V . Let G1 denote the kernel
of the determinant map G→ GL(V ) → Gm.

[Write out six axioms.]

Remark 4.1. Condition 6(iii) has a typo, it should say: for each fixed k, every point of
V (Z)gen with gvv (mod p) ∈ Yk(Fp) arises as gvv for some V (Z)gen at most c times up to
G(Z)-equivalence, where c is an absolute constant.

Theorem 4.2. If f,G, V satisfy these six conditions, then f takes the expected density of
squarefree values.

4.2 Application to number fields of degree ≤ 5

We will apply the preceding setup to polynomials arising in the arithmetic of rings over Z
which are free of rank ≤ 5.

Let f ∈ {f3, f4, f5} denote the primitive integral polynomial that generates the ring of
invariants for

1. the action of SL2(C) on Sym3(C2), the space of binary cubic forms over C;

2. the action of SL2 ×SL3(C) on C2 ⊗ Sym2(C3), the space of pairs of ternary quadratic
forms over C; or

3. the action of SL4 × SL5(C) on C4 ⊗ ∧2(C5), the space of quadruples of 5 × 5 skew-
symmetric matrices over C.

In each case, f is a polynomial of degree m in m variables where m = 4, 12 or 40, respectively.
We will show that these three polynomials satisfy the preceding setup, and therefore have
the expected density of squarefree values.

These three polynomials turn out to have the same expected density of squarefree values,
given by ∏

p

(1− cp/p
2m) =

2

3
ζ(2)−1
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where cp is, as usual, the number of x ∈ (Z/p2Z)m satisfying f(x) = 0 in Z/p2Z.

This theorem can be used to determine the density of Sn-number fields with squarefree
discriminant for n = 3, 4, 5.

Theorem 4.3. Let n = 3, 4 or 5 and let N sqf
n (X) denote the number of isomorphism classes

of number fields of degree n that have squarefree discriminant of absolute value less than X.
Then

N sqf
n (X) =

r2(Sn)

3 · n!
ζ(2)−1 ·X + o(X)

where r2(Sn) denotes the number of 2-torsion elements in the symmetric group Sn.

4.3 Proof of Theorem 4.2

Let f,G, V be as in §4.1, satisfying the six conditions there. We begin by showing that f
takes the correct density of squarefree values in a large scaling of the fundamental domain
when we only sample the generic points, i.e.

lim
X→∞

#{x ∈ FX ∩ V (Z)gen : f(x) squarefree}
#{x ∈ FX ∩ V (Z)gen}

=
∏
p

(1− cp/p
2m) (1)

where cp as before denotes the number of elements x ∈ (Z/p2Z)m satisfying f(x) = 0 in
Z/p2Z.

Compactly approximating the fundamental domain: First we define a compact approximation
to FX which will be used as the homogeneously expanding region in the geometric sieve. Let
ε > 0 be a small parameter and choose a compact measurable subset

F1−ε
1 ⊂ F1 satisfying Vol(F1−ε

1 ) = (1− ε)Vol(F1).

(That is, F1−ε
1 is obtained from F1 by cutting off the cusps of F1 sufficiently far out.) Set

F1−ε
X := X1/d · F1−ε

1 so that Vol(F1−ε
X ) = (1− ε)Vol(FX).

We need to estimate the error of counting lattice points with the compact approximation.
As X grows, the volume of F1−ε

X grows proportionally by Xm/d. Thus the number of lattice
points in V (Z) which lie in F1−ε

X is Vol(F1−ε
X ) + o(Xm/d). By Condition 1 (“HIT”), the
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non-generic points in V (Z) have density zero, and thus

|F1−ε
X ∩ V (Z)gen| = |F1−ε

X ∩ V (Z)|+ o(Xm/d) = Vol(F1−ε
X ) + o(Xm/d)

= (1− ε)Vol(F1)X
m/d + o(Xm/d).

With the help of Condition 5 (“CRT”), the same argument applied to a subset S ⊂ V (Z)
defined by finitely many congruence conditions shows that

|F1−ε
X ∩ Sgen| = (1− ε)Vol(F1)X

m/d
∏
p

µp(S) + o(Xm/d).

Meanwhile, Condition 5 (“CRT”) also estimates number of the generic points of S in the
entire (non-compact) fundamental domain FX to be

|FX ∩ Sgen| = Vol(F1)X
m/d
∏
p

µp(S) + o(Xm/d).

This shows that the error of using the compact approximation is

|(FX\F1−ε
X ) ∩ Sgen| = εVol(F1)X

m/d
∏
p

µp(S) + o(Xm/d). (2)

Proving the upper bound on the density: For each prime p let Sp = {v ∈ V (Z) : p2 - f(v)}
and set S = ∩pSp.

Since
|FX ∩

⋂
p≤M Sgen

p |
Xm/d

is a monotonically decreasing function of M ,

inf
M>0

|FX ∩
⋂

p≤M Sgen
p |

Xm/d
= lim

M→∞

|FX ∩
⋂

p≤M Sgen
p |

Xm/d
.

Exercise: Show that for any doubly-indexed sequence (φX,M)X,M>0 one has

lim sup
X→∞

inf
M>0

φX,M ≤ inf
M>0

lim sup
X→∞

φX,M .
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By Condition 5 (CRT) applied to the set
⋂

p≤M Sp, we have that∣∣∣∣∣FX ∩
⋂
p≤M

Sgen
p

∣∣∣∣∣ = Vol(FX) ·
∏
p≤M

µp(S) + o(Xm/d).

(Note that this formula requires taking X to infinity before M , since we did not stipulate
that the implied constant was independent of M .)

By Condition 4, Vol(FX) = Vol(X1/dF1) = Xm/dVol(F1). Thus

lim sup
X→∞

|FX ∩ Sgen|
Xm/d

= lim sup
X→∞

inf
M>0

|FX ∩
⋂

p≤M Sgen
p |

Xm/d
≤ inf

M>0
lim sup
X→∞

|FX ∩
⋂

p≤M Sgen
p |

Xm/d

≤ inf
M>0

Vol(F1) ·
∏
p≤M

µp(S)

= Vol(F1) ·
∏
p

µp(S).

Proving the lower bound on the density: For the lower bound, we’ll prove that there are
few generic points v ∈ FX for which f(v) is divisible by p2 for large primes p. Let Wp =

V (Z)\Sp ⊂ V (Z) denote the set of points v with p2|f(v). Observe that

⋂
p≤M

Sp ⊂

(
S ∪

⋃
p>M

Wp

)

and thus ∣∣∣∣∣FX ∩
⋂
p≤M

Sgen
p

∣∣∣∣∣ ≤ |FX ∩ Sgen|+

∣∣∣∣∣FX ∩
⋃
p>M

W gen
p

∣∣∣∣∣ .
Lemma 4.4 (tail estimate).∣∣∣∣∣FX ∩

⋃
p>M

W gen
p

∣∣∣∣∣ = Oε(X
m/d/(Mmin(η,1) logM) +X

m−1
d ) +O(εXm/d) + o(Xm/d)

where the implied constants are independent of M and X.

Remark 4.5. [Bha14] does not have the term o(Xm/d), but this error term comes up from
Condition 5 when estimating the number of weak multiples of p2 in FX ∩ V (Z)gen with
M < p ≤ X1/(2d).
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By the lemma,∣∣∣∣∣FX ∩
⋂
p≤M

Sgen
p

∣∣∣∣∣ ≤ |FX ∩ Sgen|+Oε(X
m/d/(Mmin(η,1) logM)+X

m−1
d )+O(εXm/d)+o(Xm/d).

Using Condition 5 again on the left-hand side, we have now

Vol(FX) ·
∏
p≤M

µp(S) ≤

|FX ∩ Sgen|+Oε(X
m/d/(Mmin(η,1) logM) +X

m−1
d ) +O(εXm/d) + o(Xm/d).

Dividing by Xm/d and taking the limit infimum over X obtains

Vol(F1) ·
∏
p≤M

µp(S) ≤ lim inf
X→∞

|FX ∩ Sgen|
Xm/d

+Oε(1/(M
min(η,1) logM)) +O(ε).

Now take M to infinity, and then ε to zero to obtain the correct lower bound:

Vol(F1) ·
∏
p

µp(S) ≤ lim inf
X→∞

|FX ∩ Sgen|
Xm/d

.

We have shown the correct lower and upper bounds, and thus

lim
X→∞

|FX ∩ Sgen|
Xm/dVol(F1)

= lim
X→∞

|FX ∩ Sgen|
Vol(FX)

=
∏
p

µp(S).

We have shown that f has squarefree values with the correct density when we sample over
generic points in large scalings of the fundamental domain. This concludes the proof of (1).

Now we return to the proof of the lemma.

Proof. Write W gen
p = W

(1)
p tW (2)

p where W (1)
p (resp. W (2)

p ) denotes the set of points where
the discriminant is strongly (resp. weakly) a multiple of p2. By Corollary 1.8, there is a
subvariety Y of An

Q of codimension two such that for all but finitely many primes p,

{a ∈ V (Z) | f is strongly a multiple of p2 at a} ⊆ {a ∈ V (Z) | a (mod p) ∈ Y (Fp)}.
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Observe that

∣∣FX ∩
(
∪p>MW

(1)
p

)∣∣
≤ |{a ∈ FX ∩ V (Z) : a (mod p) ∈ Y (Fp) for some prime p > M}|

≤
∣∣{a ∈ F1−ε

X ∩ V (Z) : a (mod p) ∈ Y (Fp) for some prime p > M
}∣∣

+
∣∣{a ∈ (FX\F1−ε

X ) ∩ V (Z)
}∣∣

≤
∣∣{a ∈ F1−ε

X ∩ V (Z) : a (mod p) ∈ Y (Fp) for some prime p > M
}∣∣

+ εVol(FX).

We apply the geometric sieve to the compact approximation F1−ε
1 with scaling parameter

r = X1/d to obtain the bound

∣∣{a ∈ F1−ε
X ∩ V (Z) : a (mod p) ∈ Y (Fp) for some prime p > M

}∣∣
= Oε

(
Xm/d

M2−1 logM
+ (X1/d)m−2+1

)
= Oε

(
Xm/d

M logM
+X(m−1)/d

)
.

Combining these,

∣∣FX ∩
(
∪p>MW

(1)
p

)∣∣ = Oε

(
Xm/d

M logM
+X(m−1)/d

)
+O(εXm/d).

This proves the required bound for strong multiples.

For the weak multiples in W (2)
p for primes p in the range M < p ≤ X1/(2d), observe that any

v ∈ W
(2)
p has f(v) divisible by p2 where p2 ≤ X1/d. Such v which are also in the compact

region F1−ε
X = X1/dF1−ε

1 are determined by congruence conditions modulo p2 where the
modulus p2 is smaller than the diameter X1/d of the bounding region. For each such p,
the region F1−ε

X is covered by O((X1/d/p2)m) many boxes of sidelength p2, and each box
contributes cp = {a ∈ V (Z/p2Z) : f(a) ≡ 0 (mod p2)}.

We claim that
cp = O(p2(m−2)).

Indeed, suppose a ∈ V (Z/p2Z) and f(a) ≡ 0 (mod p).

If f(x1, a2, . . . , am), a polynomial in x1, satisfies ∂1f(a) 6≡ 0 (mod p), then knowing the
residue a1 (mod p) uniquely determines a1 (mod p2) by Hensel’s lemma. Thus, the points
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a ∈ V (Z/p2Z) for which f(a) ≡ 0 (mod p) and ∂kf(a) 6≡ 0 (mod p) for all k are determined
by their reductions mod p, and there are O(pm−1) such points in V (Z/pZ) by the Lang–Weil
bound.

Meanwhile, the number of points a ∈ V (Z/pZ) for which f(a) ≡ 0 (mod p) and ∂kf(a) ≡
0 (mod p) for some k is O(pm−2) since it is a finite union of subvarieties of codimension at
least two by Condition 7. Each point of V (Z/pZ) has pm lifts to V (Z/pZ), so we see that
cp = O(p2(m−2)).

Thus

#{(v, p) : v ∈ F1−ε
X ∩W (2)

p } =
∑

M<p≤X1/(2d)

O(Xm/d/p2) = O

(
Xm/d

M logM

)
.

Recall our earlier error estimate (2) for generic points in the cusps:

|(FX\F1−ε
X ) ∩ V (Z)gen| = εVol(F1)X

m/d
∏
p

µp(S) + o(Xm/d).

This shows that

#{(v, p) : v ∈ FX ∩W (2)
p } ≤ O

(
Xm/d

M logM

)
+ |(FX\F1−ε

X ) ∩ V (Z)gen|

= O

(
Xm/d

M logM

)
+O(εXm/d) + o(Xm/d).

Now we turn to the weak multiples in W (2)
p for primes p in the range p > X1/(2d) (congruence

larger than the sidelength of the box). For this estimate we will use Condition 6. Write
W

(2)
p = ∪m

k=0W
(2)
p (k) where W

(2)
p (k) is the subset of W (2)

p having a given value of k in
Condition 6(ii).

For such a k, let α denote the infimum of a over all v ∈ W
(2)
p (k).

By Condition 6, there is an element g ∈ G(Q) such that gv ∈ V (Z)gen, |I(gv)| = p−a|I(v)| ≤
X/pα, and gv (mod p) lies on Yk(Fp). Furthermore, a given element of V (Z)gen which reduces
mod p to a point on Yk can only arise as gv for finitely many v up to G(Z)-equivalence by
Condition 6(iii).
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This shows that

N(W (2)
p (k);X) = O(N(V (Z);X/pα)) = O((X/pα)m/d)

where the second inequality follows from Condition 5 (“CRT for generic points in the fund.
domain”).

If k = 0 then we can sum this estimate over primes p > M ′ = max{M,X1/(2d)} to get∣∣∣∣∣FX ∩
⋃
p>M

W (2)
p (0)

∣∣∣∣∣ = O(Xm/d/(M ′)α(m/d)−1) = O(Xm/d/(Mη logM))

since α(m/d)− 1 ≥ η > 0 by assumption.

If k ≥ 1, then we use the geometric sieve again with Condition 6:

N(∪p>M ′W (2)
p (k);X) = O(|{v ∈ V (Z) : v ∈ FX/pα , v (mod p) ∈ Yk(Fp) for some p > M ′}|)

= O(|{v ∈ F1−ε

X/M ′α ∩ V (Z) : v (mod p) ∈ Yk(Fp) for some p > M ′}|+ ε(X/M
′α)m/d))

= Oε((X/M
′α)m/d/(M

′k−1 logM ′) + (X/M
′α)

m−k+1
d ) +O(ε(X/M

′α)m/d).

Summing this over k ∈ {1, . . . ,m} proves the claimed bound.

We have shown that

lim
X→∞

#{x ∈ FX ∩ V (Z)gen : f(x) squarefree}
#{x ∈ FX ∩ V (Z)gen}

=
∏
p

(1− cp/p
2m).

In other words, the correct density is obtained on generic points in a fundamental domain
for G(Z) acting on V (R).

Now we would like to prove the correct density is obtained in a large ball. Let BN =

[−N,N ]m ⊂ V (R) (for some basis). Let SM ⊂ Z denote the set of all integers that are not
multiples of p2 for any prime p ≤M . Then

lim
N→∞

#{x ∈ V (Z) ∩BN : f(x) ∈ SM}
(2N + 1)m

=
∏
p≤M

(1− cp/p
2m)

by the Chinese Remainder Theorem, since we are only imposing congruence conditions at
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finitely many primes. Letting M go to infinity, and using the exercise on doubly-indexed
sequences, we have that

lim sup
N→∞

#{x ∈ V (Z) ∩BN : f(x) squarefree}
(2N + 1)m

≤
∏
p

(1− cp/p
2m).

(This upper bound indeed holds for any polynomial.)

For the lower bound, as we did earlier, we will use a tail estimate.

First observe that by Condition 1, the non-generic points in BN have vanishing density as
N → ∞, so we may ignore them.

Let Wp ⊂ V (Z) denote the set of points v with p2|f(v). For the generic points in BN ∩W gen
p ,

i.e. the generic points in BN where f is a multiple of p2, we will cover a large portion of BN

by fundamental domains for the action of G(Z) on V (R) and then use the density formula
we proved in the fundamental domain.

Observe that BN is covered by a countable union ∪∞
i=1γiFX of translates of FX (taken over

γi ∈ G(Z)) where X is sufficiently large so that |I(v)| < X for all v ∈ BN . Since I has
degree d, we may take X = cNd for some fixed constant c > 0.

Let BN,s := BN ∩∪s
i=1γiFX . By the tail estimate applied once for each fundamental domain

γiF , we have that∣∣∣∣∣BN,s ∩
⋃
p>M

W gen
p

∣∣∣∣∣ = sOε(X
m/d/(Mmin(η,1) logM) +X

m−1
d ) + sO(εXm/d) + so(Xm/d)

= sOε(N
m/(Mmin(η,1) logM) +Nm−1) + sO(εNm) + so(Nm).

Let Sp = {v ∈ V (Z) : p2 - f(v)} and S = ∩pSp. Observe that (as we used before)

⋂
p≤M

Sp ⊂

(
S ∪

⋃
p>M

Wp

)

and thus ∣∣∣∣∣BN,s ∩
⋂
p≤M

Sgen
p

∣∣∣∣∣ ≤ |BN,s ∩ Sgen|+

∣∣∣∣∣BN,s ∩
⋃
p>M

W gen
p

∣∣∣∣∣ .

34



Thus

lim inf
N→∞

#{x ∈ V (Z) ∩BN,s : f(x) squarefree}
vol(BN,s)

≥
∏
p≤M

(1− cp/p
2m) + sOε(1/(M

min(η,1) logM)) + sO(ε).

Let M → ∞, then ε→ 0, and then s→ ∞ to obtain the desired lower bound:

lim inf
N→∞

#{x ∈ V (Z) ∩BN : f(x) squarefree}
vol(BN)

≥
∏
p

(1− cp/p
2m).

This completes the proof of Theorem 4.2.

4.4 Verifying the hypotheses for f3, f4, f5

Let n ∈ {3, 4, 5}. For any ring T , let V (T ) denote

1. the space Sym3T
2 of binary cubic forms with coefficients in T if n = 3,

2. the space T 2 ⊗T Sym2T
3 of pairs of ternary quadratic forms with coefficients in T if

n = 4, or

3. the space T 4 ⊗T ∧2T 5 of quadruples of 5× 5 skew-symmetric matrices with entries in
T if n = 5.

For these three cases, respectively, the associated algebraic group G acting on V is

1. GL2 for the natural action tensored with det−1,

2. GL2 × SL3 for the natural action, or

3. GL4 × SL5 for the natural action.

It is a non-trivial fact that these are all prehomogeneous spaces, i.e. each representation V

possesses a Zariski-open orbit of G.

We will call an orbit of G(T ) on V (T ) nondegenerate if the discriminant (i.e. value of f) of
any element in that orbit is nonzero.
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The nondegenerate orbits of G(T ) on V (T ) for a field T shown by Wright–Yukie [WY92] to
be canonically in bijection with isomorphism classes of étale T -algebras of rank n ∈ {3, 4, 5},
resp.

The nondegenerate orbits of G(Z) on V (Z) were classified by Bhargava:

Theorem 4.6. The nondegenerate orbits of G(Z) on V (Z) are canonically in bijection with
isomorphism classes of pairs (R,R′) where R is a commutative ring with unit which is a
free Z-module of rank n and R′ is a resolvent ring of R. In this bijection, the discriminant
of an element v ∈ V (Z) equals the discriminant of the corresponding ring R. Furthermore,
every such ring R arises as (R,R′) at least once in this bijection, and if R is maximal then
it occurs exactly once.

A resolvent ring of a (cubic, quartic, or quintic) ring R is a (quadratic, cubic, or sextic) ring
R′ that satisfies certain properties, e.g. R′ has the same discriminant as R.

4.4.1 Remark: Integral orbits on closed orbits

Note the importance of having an open orbit in V . For the closed orbits, there is the
fundamental and general theorem of Borel–Harish-Chandra.

Theorem 4.7 (Borel–Harish-Chandra 1962). Let G be a reductive group defined over Z,
π : G→ GL(V ) a rational Q-representation, Γ a G(Z)-stable lattice in V (Q), and O ⊂ V a
closed orbit of G. Then O ∩ Γ consists of a finite number of orbits of G(Z).

The open orbit {f 6= 0} ⊂ V of a prehomogeneous space may be identified with a closed
orbit in a larger representation: for any integer d, there is the canonical isomorphism

{f 6= 0} ∼= Od = {(v, t) : f(v)t = d} ⊂ V × A1
χ−1

where χ : G→ Gm is the character for which f : V → A1 is χ-equivariant.

The theorem of Borel–Harish-Chandra says that

G(Z)\Od(Z) = {(v, t) ∈ Z2 : f(v)t = d}

is finite. The larger affine space V ×A1
χ−1 “sees” the values of f , and the integrality hypothesis

now enforces the strong restriction that f(v) divides d.
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In particular, unbounded ramification can only occur in an open orbit.

4.4.2 Where do these orbit parametrizations come from?

Reference: [Bha08].

To verify the six conditions, we will need to know more about how the points of these orbit
parametrizations correspond to rings.

There is a natural mapping which associates to any nondegenerate ring R of rank n and
basis α of R/Z a set XR,α(C) of n points in Pn−2(C). First, following [Bha08], we give an
explicit construction with coordinates. Then we give a coordinate-free construction.

Fix a Z-basis α = 〈α0 = 1, α1, . . . , αn−1〉 of R. Since R is nondegenerate, K = R ⊗ Q
is an étale Q-algebra of dimension n, and there are n distinct Q-algebra homomorphisms
ρ(1), . . . , ρ(n) from K to C. For any α ∈ K, let α(k) = ρ(k)(α) ∈ C. Let 〈α∗

0, . . . , α
∗
n−1〉 be the

dual basis under the trace pairing. For k ∈ {1, . . . , n} set

x
(k)
R = [α

∗(k)
1 : · · · : α∗(k)

n−1] ∈ Pn−2(C).

We have constructed a set XR,α(C) = {x(1)R , . . . , x
(n)
R } ⊂ Pn−2(C) depending only on the ring

R and the latter n− 1 elements of the basis 〈α0, . . . , αn−1〉.

Exercise: Show that XR,α(C) only depends on R and the Z-basis α = 〈α1, . . . , αn−1〉 of
R/Z.

In fact, the set XR,α(C) arises naturally as the set of C-points of the image of SpecR under
a certain rational map φα : SpecR 99K Pn−2

Z constructed using α.

Indeed, recall the inverse different D−1 is the R-submodule of K equal to {a ∈ K : trKQ (ax) ∈
Z for all x ∈ R}. We have already defined a Z-basis of D−1,

α = 〈α∗
0, . . . , α

∗
n−1〉 ⊂ D−1.

Suppose for simplicity that R is Gorenstein, i.e. the inverse different is invertible as an
R-module. Then we have a basis α of global sections of a line bundle D−1 on SpecR with
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no base locus. This determines a morphism to projective space over Z:

φα : SpecR → Pn−1
Z

x 7→ [α∗
0(x) : · · · : α∗

n−1(x)].

Since α∗
1, . . . , α

∗
n−1 all vanish on 1, the point [α∗

1(x) : · · · : α∗
n−1(x)] lies in a fixed hyperplane

Pn−2
Z ⊂ Pn−1

Z , and we obtain a morphism

φα : SpecR → Pn−2
Z

x 7→ [α∗
1(x) : · · · : α∗

n−1(x)].

It is easy to check that this morphism is a closed immersion. The finite set XR,α(C) is
recovered as the set of C-points of the image of φα.

For small values of n, it is possible to find a space V of homogeneous tensor functions on
An

Z such that for each (R,α) there is a tensor x ∈ V whose “degeneracy locus” Xx in Pn−2
Z

is birational to im(φR,α) ⊂ Pn−2
Z . (If R is Gorenstein, then birational can be upgraded to

isomorphic.)

In each case, there is a natural symmetry group G acting on V with the property that x and
gx are associated with the same ring R whenever g ∈ G(Z). In favorable cases, the space V
has a Zariski-open orbit.

If n = 3, then x ∈ V is a nondegenerate binary cubic, and Xx is defined to be the 3 roots of
x in P3−2.

If n = 4, then x determines a pair of conics in P4−2, and Xx is defined to be the intersection
of these two conics (this will generally have 4 points).

If n = 5, then x gives us four 5×5 skew-symmetric matrices. Regarding the first tensor factor
A4 in V as the space of linear forms on a four-dimensional affine space, we may equivalently
regard x as a single 5 × 5 skew-symmetric matrix M whose entries are linear forms. To
construct functions which cut out Xx ⊂ P5−2 = P4−1 we will use the principal 4× 4 minors
of M .

Exercise: Let A be an n × n skew-symmetric matrix. If n is odd, then detA = 0. If n is
even, then there is a polynomial pfa of degree n/2 in the

(
n
2

)
independent entries of A (which

is independent of A) such that detA = pfa(A)2. The quantity pfa(A) (which is a canonically
determined square-root of the determinant up to sign) is called the Pfaffian of A.
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The determinants of the five principal 4× 4 minors of M are degree four squares of Pfaffians
in four variables. For generic x, these five Pfaffians will be linearly independent. These
Pfaffians cut out quadrics in P3

Z which will generically intersect in 5 points.

In fact, for a generic set X of five points in P3
C, the family of quadratic forms FX which

vanish at X is five dimensional (the space of all quadratic forms on P3
C is 10 and vanishing

at a point is a linear condition). When x is generic, its associated five Pfaffians will span
FX .

4.4.3 Verifying the six conditions

Now we verify that the six conditions are satisfied for f3, f4, f5. As we will see, the first
five conditions essentially follow from arguments which apply uniformly for prehomogeneous
spaces whose open orbits have finite stabilizers. For the sixth condition we will use ad hoc
arguments.

Recall that we need a notion of “generic”. We call any nondegenerate orbit of V (Z) generic
if it corresponds to an order in a degree n number field with Galois group Sn.

A direct calculation shows that the open orbit of V is isomorphic to G/Sn for n = 3, 4, 5.
Note this only needs to be verified on a single element in the open orbit. E.g. the stabilizer
of the binary cubic form

(x+ y)(x2 + xy + y2)

in GL2(C) is a copy of S3 generated by (x, y) 7→ (y, x) and (x, y) 7→ (ζx, ζy) where ζ is a
primitive 3rd root of unity. Explicitly, it is the group(

1 0

0 1

)
,

(
0 1

1 0

)
,

(
ζ 0

0 ζ

)
,

(
0 ζ

ζ 0

)
,

(
ζ2 0

0 ζ2

)
,

(
0 ζ2

ζ2 0

)
.

This shows Condition 2.

Consider the Sn-torsor
π : G→ G/Sn.

The fiber of π over any point of G/Sn is a Sn-torsor over that point; in particular, the fiber
of π over any rational point is Spec K̂ where K̂ is an étale Q-algebra equipped with an action
of Sn. The subset of integral points in (G/Sn)(Q) for which the Q-algebra K̂Sn−1 is not a
field with Galois group Sn is a thin set.
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By S. Cohen’s estimate on thin sets (Theorem 3.2), such points form a vanishing proportion
among all integral points. This proves Condition 1.

We will take I = fn for Condition 3 (homogeneous G1-invariant). Since fn is equivariant for
the determinant character of V , it is G1-invariant.

Condition 4 (existence of fundamental domains homogeneously expanding w.r.t. I) essen-
tially follows from the existence of Siegel sets for G(Z) acting on G(R) since the open orbit
of V can be identified with G up to a finite stabilizer. There is a small complication since
the real points of the open orbit break up into several G(R)-orbits over R (depending on the
number of real roots), and each real component may have a different stabilizer.

Condition 5 (CRT in the fundamental domain) essentially follows from usual CRT since V is
just affine space, but there is a complication due to the cusps (noncompactness of FX). One
must compactly approximate FX to apply CRT, and then verify that the number of lattice
points in the set defined by finitely many congruences which lie in the cusps is vanishingly
small.

We now verify Condition 6 for f3, f4, f5 with parameters

a = 2, c =

(
n

2

)
, k = 0.

Then Conditions 6(ii) and 6(iv) are automatically satisfied.

Now we verify Conditions 6(1) and 6(iii). A nondegenerate element of x ∈ V (Fp) determines
n distinct points Xx in Pn−2

Fp
(Fp).

Recall that each x ∈ V has a “degeneracy locus” Xx ⊂ Pn−2
Z which is birational to SpecR

and if R is Gorenstein then Xx is isomorphic to SpecR.

We claim that for any (large) prime p, the discriminant f(x) ∈ Fp of an element x ∈ V (Fp)

vanishes if and only if either Xx ⊂ Pn−2
Fp

is finite and has fewer than n points or dimXx > 0.

In general, if the rational map SpecR 99K Pn−2
Z is defined at p then Xx

∼= SpecR ⊗ Fp and
thus Xx will have fewer than n points if R is ramified at p.

It is possible for dimXx > 0 — e.g. f may have all its coefficients divisible by p.4 For such p
the ring R cannot be Gorenstein, thus R must also be ramified at p (since unramified implies

4[Is Deligne’s argument in his letter to GGS for cubic rings, that the morphism extends over the non-
Gorenstein locus, really correct?]
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Gorenstein). So in either case, the discriminant f(x) will vanish.

The latter case where a subvariety Xx of Pn−2
Fp

of positive dimension is cut out by x ∈ V (Fp)

occurs on a subvariety of VFp of positive codimension. Indeed for n = 3 this does not occur
(except for very few cases when x ≡ 0 (mod p)). When n = 4, 5 this can only happen when
multiple forms cut out the same subvariety of VFp which can only happen if the coefficients
reduce mod p to a subvariety of V of positive codimension.

Similarly, the case where strictly fewer than n−1 points are cut out by x ∈ V (Fp) also occurs
on a subvariety of positive codimension. These two cases correspond to strong multiples of
p2, i.e. the image of W (1)

p in V (Fp).

The image of W (2)
p in V (Fp) consists of the remaining case, which is when exactly n − 1

points are cut out by x ∈ V (Fp).

We now determine the points of V (Z/p2Z) whose discriminant is weakly a multiple of p2.
Let x(s, t) ∈ V (Z) have discriminant weakly a multiple of p2. The reduction x (mod p) of x
has a double (but not triple) root in P1. This implies that x is G1(Fp)-equivalent to

as3 + bs2t

where a, b ∈ Fp and b 6= 0. It’s well-known that G1(Z) → G1(Z/pZ) is surjective, so x(s, t) is
G(Z)-equivalent to a binary cubic form of the form as3+ bs2t+ cst2+dt3 where b is coprime
to p and c, d are multiples of p. The discriminant f3(x) satisfies

f3(x) ≡ −4b3d (mod p2)

and thus (for p > 2) d must be a multiple of p2. Observe that

x′ =

(
1

1/p

)
(as3 + bs2t+ cst2 + dt3) = pas3 + bs2t+ (c/p)st2 + (d/p2)t3 ∈ V (Z)

and that its discriminant is equal to ±f3(x)/p2.

Such an x corresponds to a ring R which is not maximal at p (i.e. R⊗Zp is not maximal in
R ⊗Qp), and x′ corresponds to an overring R′ ⊃ R in which R is index p. x′ 6≡ 0 (mod p).
A cubic ring R′ has at most 3 subrings of index p. More precisely:

Lemma 4.8. The number of index p subrings of R = Rx is equal to the number of roots of
x (mod p) in P1(Fp).
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Figure 2: Degenerating a pair of conics.

This shows Condition 6(iii).

Now suppose n = 4. The image of W (2)
p in V (Fp) consists of pairs (A,B) of ternary quadratic

forms with precisely three common zeros in P2(Fp). The unique double zero will be Fp-
rational so it may be sent to [1 : 0 : 0] by an element of SL3(Fp). The action of SL2(Fp) on
V (Fp) takes a pair of ternary quadratic forms x = As + Bt to another pair x′ = A

′
s + B

′
t

whose coefficients are linear combinations of A and B.

By degenerating this pair via SL2(Fp), we can ensure that A′ cuts out a pair of lines inter-
secting at [1 : 0 : 0] and B

′ cuts out a nonsingular conic passing through [1 : 0 : 0] which is
not tangent to either of these lines. In terms of the associated pair of symmetric matrices,
the pair x′ takes the form 

a11 a12 a13

a12 a22 a23

a13 a23 a33

 ,
b11 b12 b13

b12 b22 b23

b13 b23 b33




where a11 = b11 = b12 = b13 = 0 and b22b33 − b
2

23 6= 0. These divisibility constraints on x′

imply that its discriminant satisfies

f4(x
′) := Disc(det(A′s+B′t)) ≡ b11(b22b33 − b223)C

3 (mod p2)

where C is the coefficient of s2t in det(A′s+B′t). From this, we see that if C were divisible
by p then f4(x

′) would be strongly a multiple of p2. Thus for f4(x′) to be weakly a multiple
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of p2 it must be that b11 is divisible by not only p but also p2.

So, if f4(x) = f4(x
′) is weakly divisible by p2, then x′ satisfies the above divisibility con-

straints, namely a11 = b12 = b13 = 0, b22b33 − b
2

23 6= 0, C 6≡ 0 (mod p), and b11 ≡ 0 (mod p2).
Thus we may multiply A by p and then divide the entries of the first row and column of
both A and B by p and obtain a new integral form x′′. This corresponds to applying the
transformation

g =

[1/p
1

]
,

1/p 1

1


 ∈ G(Q).

Thus f4(x′′) = f4(x
′)/p2 = f4(x)/p

2, which verifies Condition 6(i) with a = 2.

For n = 5 there are more complicated but analogous arguments. See [Bha14].

This completes our proof for the expected density of squarefree values for the discriminant
polynomials f3, f4, f5.

4.5 The density of Sn-number fields with squarefree discriminant

The density of squarefree values for the discriminant polynomials f3, f4, f5 may be regarded
as a statement about the density of rank n rings with squarefree density.

Orders with squarefree discriminant are necessarily maximal, and thus in one-to-one cor-
respondence with Q-algebras with Galois group Sn. The generic points with squarefree
discriminant, which have 100% density, are in one-to-one correspondence with Sn-fields.
Computing the density of squarefree values for these polynomials now proves the following
theorem:

Theorem 4.9. Let n = 3, 4 or 5 and let N sqf
n (X) denote the number of isomorphism classes

of number fields of degree n that have squarefree discriminant of absolute value less than X.
Then

N sqf
n (X) =

r2(Sn)

3 · n!
ζ(2)−1 ·X + o(X)

where r2(Sn) denotes the number of 2-torsion elements in the symmetric group Sn.

In fact one can work more generally (by Condition 5) and compute the density of number
fields satisfying arbitrary local conditions for primes in some finite set S, and which have
p-squarefree discriminant for p 6∈ S.
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More precisely, let Σ = (Σv)v denote a set of local specifications for degree n number fields,
i.e. Σv is a set of degree n étale Qv-algebras.

We assume that for sufficiently large primes p the set Σp contains all unramified and sim-
ply ramified étale degree n extensions of Qp. Also assume that Σ∞ contains all the étale
extensions of R of degree n.

Let Sp = Sp(Σp) denote the subset of points of V (Z) corresponding to rings R such that
R⊗ Zp is the ring of integers of some étale extension in Σp.

The generic elements of S = ∩pSp are the rings of integers in Sn-fields that agree with the
local specifications of Σ.

First we compute
µp({x ∈ V (Zp) : Rx[

1
p
] ∈ Σp, Rx maximal}).

Choose an additive Haar measure dx on V (Qp) and a Haar measure dg on G(Qp). Normalize
these measures so that dx(V (Zp)) = 1 and dg(G(Zp)) = #G(Fp)p

− dimG. (This latter choice
of “local convergence factor” is made to ensure that we get a convergent measure on the
adelic group G(A) from the product of these local measures.)

The additive Haar measure dx on V (Qp) transforms like dx 7→ g∗(dx) = |det g|p dx under g,
which means |f(x)|−1

p dx is G(Qp)-invariant (since |f(gx)|−1
p g∗(dx) = |f(x)|−1

p dx).

Thus for any x ∈ V (Zp), the Haar measure dg pushes forward under π : G(Zp) → G(Zp) · x :

g 7→ gx to c · |f(x)|−1
p dx for some positive constant c = cx (only depending on the orbit

G(Zp)x). A direct calculation shows that cR = |Gx| where Gx is the stabilizer subgroup of
x in G(Zp).. So

∫
A
dx = |Gx|−1

∫
π−1A

|f(πg)|pdg for any measurable subset A ⊂ G(Zp) · x.

Fix a maximal Zp-algebra R arising as (R,R′) corresponding to some x ∈ V (Zp). Since R is
maximal, it arises as (R,R′) for a unique resolvent ring R′. If y ∈ V (Zp) is also associated
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with R, then it necessarily corresponds to (R,R′), and thus is in the G(Zp)-orbit of x. Then

µp({y ∈ V (Zp) : Ry
∼= R}) = µp(G(Zp) · x) =

∫
x∈G(Zp)·x

dx

=
1

|Gx|

∫
g∈G(Zp)

|f(gx)|p dg

=
|G(Fp)|p− dimG

|Gx|
|f(x)|p·

= |G(Fp)|p− dimG · |Disc(R)|p
|Aut(R)|

.

Thus

µp({x ∈ V (Zp) : Rx[
1
p
] ∈ Σp, Rx maximal}) = |G(Fp)|p− dimG ·

∑
K∈Σp

|Disc(RK)|p
|Aut(RK)|

.

We have not yet used any properties of Σ. To evaluate the sums on the right-hand side, we
will use a “mass formula” for local extensions.

Theorem 4.10 (Serre–Bhargava mass formula [Ser78], [Bha07]). For any splitting type λ of
degree n,

∑
K/Qp : spl(K,p)=λ

|Disc(K)|p · |Aut(K)|−1 =

(∏
fe∈λ

1

pf(e−1)
· 1
f

)
· 1

|Aut(λ)|
.

Here |Aut(λ)| is defined to be the number of permutations of the factors f ei
i of λ which

preserve λ.

The Qp-algebra K has squarefree discriminant if and only if either p is unramified, or p > 2

and the splitting type spl(K, p) of p in K is of the form λ = (f 2
1 f

1
2 · · · f 1

r ). In particular, the
local condition that K ∈ Σp is determined by splitting conditions for all but finitely many p.

Summing the mass formula over these two possible splitting types consistent with squarefree
discriminant obtains ∑

R sqf

|Disc(R)|p
|Aut(R)|

=

1 + 1/p if p > 2

1 if p = 2.
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Our earlier work has shown (1):

lim
X→∞

|FX ∩ Sgen|
Xm/dVol(F1)

=
∏
p

µp(S)

where µp(S) is the density of the topological closure of S in V (Zp). Recall that µp(S) denotes
the measure of the p-adic closure Sp ⊂ V (Zp) of S.

We claim that
Sp = {x ∈ V (Zp) : Rx[

1
p
] ∈ Σp, Rx maximal}.

The containment ⊂ is clear. What is unclear is why we should be able to p-adically approx-
imate to arbitrary precision any x ∈ V (Zp) on the right-hand side by an integral x′ ∈ V (Z)
whose associated global ring R has square-free discriminant.

Assume the claim. Then

lim
X→∞

|FX ∩ Sgen|
Xm/dVol(F1)

= |G(F2)|2− dimG
∏
p>2

|G(Fp)|p− dimG(1 + 1/p)

=
2

3

∏
p

|G(Fp)|p− dimG(1 + 1/p)

and so
|FX ∩ Sgen| = XVol(F1)

2

3

∏
p

|G(Fp)|p− dimG(1 + 1/p) + o(X).

Now we evaluate the leading constant. The fundamental domain F ⊂ V op(R) for G(Z) is
the union over connected components of V op(R) of the image of a fundamental domain of
G(R) for the action of G(Z). Let ni be the order of the stabilizer subgroup of any point in
the ith connected component of V op(R). Then

vol(F1) = [G(Z) : G1(Z)]vol(G1(R)/G1(Z))
t∑

i=1

1

ni

.

The connected components of V op(R) are in bijection with the set Σ∞ of isomorphism classes
of rank n étale R-algebras, and ni is the order of the automorphism group of the ith isomor-
phism class. Thus

vol(F1) =
1

2
vol(G1(R)/G1(Z))

∑
K∈Σ∞

1

#Aut(K)
.
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Thus the leading constant is(
1

2
vol(G1(R)/G1(Z))

∑
K∈Σ∞

1

#Aut(K)

)
2

3

∏
p

|G(Fp)|p− dimG(1 + 1/p)

We claim that ∑
K∈Σ∞

1

#Aut(K)
=
r2(Sn)

n!
.

Indeed, the set Σ∞ of all isomorphism classes of étale degree n R-algebras is in bijection
with the set of non-isomorphic ways that π1(R) = Z/2Z can act on n elements, i.e. the
homomorphisms ϕ : Z/2Z → Sn up to Sn-conjugacy. Since #Aut(Kϕ) = #Z(ϕ) where
Z(ϕ) ⊂ Sn is the stabilizer of ϕ, by the orbit-stabilizer theorem (“groupoid cardinality”) we
have that ∑

K∈Σ∞

1

#Aut(K)
=

|{ϕ : Z/2Z → Sn}|
|Sn|

=
r2(Sn)

n!
.

The Tamagawa number of a product of special/general linear groups is 1:

τ(G1) = vol(G1(R)/G1(Z))
∏
p

|G1(Fp)|p− dimG1

= 1.

Note that |G(Fp)|p− dimG = |G1(Fp)|p− dimG1
(1− 1/p).

Putting this all together, the leading constant is(
1

2
vol(G1(R)/G1(Z))

∑
K∈Σ∞

1

#Aut(K)

)
2

3

∏
p

|G(Fp)|p− dimG(1 + 1/p) =
r2(Sn)

3 · n!
ζ(2)−1.

5 Monic cubic abelian polynomials

We now return to discuss some more recent results on the subject of random polynomials,
joint with Shubhrajit Bhattacharya [BO23].

Let F denote the set of polynomials of the form t3 − t2 + at + b ∈ Z[t] which have Galois
group C3, the cyclic group of order three.

Theorem 5.1. The number of polynomials t3 − t2 + at+ b ∈ F with max(|a|1/2, |b|1/3) ≤ H
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is equal to
CH2 logH +

(
C log

√
3 +D − π

3
√
3

)
H2 +Oε(H

1+ε)

as H → ∞, where

C =
4π2

81

∏
q≡2 (mod 3)

(
1− 1

q2

) ∏
p≡1 (mod 3)

(
1− 3

p2
+

2

p3

)

and

D

C
= 2γ+log(2π)−3 log

(
Γ(1/3)

Γ(2/3)

)
+
9

8
log 3+

9

4

∑
q≡2 (mod 3)

log q

q2 − 1
+
27

4

∑
p≡1 (mod 3)

(p+ 1) log p

p3 − 3p+ 2
.

Theorem 5.2. For any H ≥ 1 let EH ⊂ R2 be the ellipse defined by

EH : x2 + y2 + xy − x− y = 1
3
(H2 − 1).

If t3 − t2 + at + b ∈ F then a ≤ 0. Fix a ∈ Z≤0. The number of polynomials of the form
t3 − t2 + at+ b ∈ F for any b ∈ Z is equal to

1

2

∑
d|(1−3a)

3ω(P1(d))(−1)Ω(P2(d)) − 1

6
#E√

1−3a(Z)

where Pj(d) denotes the largest divisor of d only divisible by primes ≡ j (mod 3), and ω(n)
(resp. Ω(n)) denotes the number of prime factors of a positive integer n counted without
(resp. with) multiplicity.

To prove these theorems we relate the polynomial counting problem to an integral Diophan-
tine problem on a certain singular toric surface and then solve the Diophantine problem.

5.1 Orbit parametrizations for G-algebras

Let G be a finite group and let S be a commutative ring on which G acts by automorphisms.
We say that G acts freely on S if G acts (set-theoretically) freely on Hom(S, k) for any field
k.

Definition 5.3 (G-algebra). Set R = SG. We say S/R is an étale G-algebra if G acts freely
on S. We say S/R is a (generically étale) G-algebra if G acts freely on S[∆−1] for some ∆ ∈ R

which is a non-zero-divisor on S.
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Note that S/R is an étale G-algebra if and only if SpecS → SpecR is a G-torsor.

We will construct an orbit parametrization for G-algebras. Unfortunately it is basically never
prehomogeneous, but it has the merit of being uniform in G.

This parametrization was found in joint work with Julian Rosen, and also independently by
Fabian Gundlach.

An element of a G-algebra S/R is normal if it is trace-one and its G-conjugates form an
R-module basis for S/R.

Normal elements may or may not exist — e.g. S may not be free — but the trace-one
condition is not restrictive. (Easy exercise: if the G-conjugates of x form a basis of S/R,
then the trace of x is in R×.)

Let P(reg) = ProjZ[Xg : g ∈ G] be the projective space of lines in the regular representation
of G. The unit group of G is the reductive group scheme G over Z whose R-points are given
by

G(R) =

{∑
g∈G

ag[g] ∈ RG× :
∑
g∈G

ag = 1

}
.

For example, as a group scheme fibered over x ∈ SpecZ, one can show that GC2,x is Gm,x for
all x 6= SpecF2 while GC2,F2 = Ga,F2 .

The unit group of G can be identified with an open affine subset of P(reg):

G = {∆ is invertible} ⊂ P(reg)

u 7→ span(u)

where
∆(X) = det(Xgh)g,h

is the group determinant of G.

The augmentation-one condition
∑

g∈G ag = 1 can be thought of as de-homogenizing w.r.t.
the coordinate

∑
g∈GXg and corresponds to our trace-one condition on normal elements.

Theorem 5.4 (Gundlach 2020, O.–Rosen 2020). The R-points of the affine homogeneous
scheme G/G are naturally in correspondence with isomorphism classes of pairs (S/R, x)

where S/R is an étale G-algebra and x ∈ S is a normal element.
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We now prove this theorem.

Lemma 5.5. The mapping ϕ 7→ ϕ(X1) is a bijection from the set of G-equivariant ring
homomorphisms ϕ : O(G) → S to the set of normal elements of S/R.

Proof. There is a bijection from the set of G-equivariant ring homomorphisms ϕ : Z[Xg : g ∈
G] → S to the set of elements of S, given by ϕ 7→ ϕ(X1), since the values of ϕ on the other
coordinates are uniquely determined by equivariance.

Write x = ϕ(X1). The homomorphism ϕ extends to Z[Xg : g ∈ G][∆−1] if and only if

ϕ(∆)2 = det(gh(x))2g,h
def
= disc({gx}g) ∈ S×.

We claim that ϕ(∆)2 ∈ S× if and only if {gx}g is a basis of S/R.

The property of being invertible is local, so we may assume S/R has a basis (bk)k. Writing
gx =

∑
k agkbk for agk ∈ R we have

det (gh(x))2g,h = det(trS/R(g(x)h(x))g,h) = det(trS/R(bgbh)g,h) det(a)
2.

Thus ϕ(∆)2 ∈ S× if and only if det(a) ∈ S× and the claim is shown.

The homomorphism ϕ factors through Z[Xg : g ∈ G][∆−1] → O(G) if and only if ϕ kills
1−

∑
gXg, which occurs if and only if trS/R(x) = 1.

Proof of Theorem. For any ring R, define the set

M(R) = {isom. classes of pairs (S, x) : S/R étale G-algebra, x ∈ S normal}.

We will demonstrate the existence of bijections M(R) ∼= V (R) which are functorial in R.

The subgroup G ⊂ G acts freely on G, and therefore the scheme-theoretic quotient G/G
represents the stack-theoretic quotient [G/G].

By definition of the stack-theoretic quotient, the R-points of [G/G] are pairs

(SpecS → SpecR, ψ : T → G)

where SpecS → SpecR is a G-torsor and ψ : T → G is a G-equivariant morphism.
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By the lemma, such pairs correspond to pairs (S/R, x) where x = ψ∗(X1) is a normal element
of S/R and we obtain a bijection M(R) ∼= (G/G)(R).

For an elementary (and longer) proof without stacks, see my paper with Julian Rosen.

5.2 Twists of G-algebras

We take G = C3, and let T = G/G. This homogeneous scheme is a torus since G is abelian.
We have shown that

T (Q) ∼= {(K/Q C3-algebra, x normal)}.

Concretely, a C3-algebra K/Q is a Q-algebra equipped with an action of C3 for which there
is a C3-linear Q-algebra isomorphism from K to either a cubic abelian number field or the
split algebra Q3.

Using this bijection we consider the function

Char: T (Q) −→ {t3 − t2 + at+ b ∈ Q[t]}

taking a rational point (K/Q, x) to the characteristic polynomial of x.

Proposition 5.6. The image of the function Char is the subset of polynomials which either
have Galois group C3 or split into three linear factors over Q with at most two being the
same. If f is such a polynomial, then the number of rational points of T with characteristic
polynomial f is given by

wf =

1 if f has a double root,

2 otherwise.

Moreover, a rational point P of T is D0-integral if and only if the associated characteristic
polynomial t3 − t2 + at+ b is integral.

Proof. It is an easy exercise to show that x = (a, b, c) ∈ Q3 is normal if and only if a, b, c are
not all equal, and this proves the first claim.

For the second claim, first suppose K is a cubic abelian field. Then K, equipped with its
canonical Galois action, is a C3-algebra. The twist K ′ of the C3-algebra K by the outer
automorphism g 7→ g−1 of C3 (with twisted action g ∗x = g−1x) is not isomorphic to K as a
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C3-algebra.5 So (K/Q, x) and (K ′/Q, x) are two rational points with the same characteristic
polynomial.

Now suppose K = Q3. Any transposition gives an isomorphism of C3-algebras from K to
its twist K ′ by the outer automorphism of C3. The pairs (K, x) and (K ′, x) are equivalent
if and only if x has exactly two identical coordinates (swapping the identical coordinates
gives the required isomorphism); in particular, if x has distinct coordinates then (K, x) and
(K ′, x) determine different rational points of G/C3 (even though K and K ′ are isomorphic
as C3-algebras!).

For the third claim, at least one direction is easy: the coefficients a and b of f are the values at
(K/Q, x) of the C3-invariant polynomials e2(X/ε, Y/ε, 1−X/ε−Y/ε) and −e3(X/ε, Y/ε, 1−
X/ε− Y/ε) in Z[X/ε, Y/ε]C3 = O(SZ −D0). The other direction is more work and omitted
here (see [BO23, Prop. 3]).

5.3 An unexpected isomorphism

The tori G and T = G/C3 happen to be isomorphic (over Q)! They are both isomorphic to
RE

QGm where E = Q(
√
−3).

One can write down a (reasonably) natural isomorphism between them. We arrive at the
rather strange conclusion that there is a natural bijection

Q(
√
−3)× ∼= {(K/Q, x) : G(K/Q) ∼= C3, x normal}.

One can prove the following precise result. Let ζ = e2πi/3.

Theorem 5.7. If u + vζ ∈ Q(
√
−3)× has norm N and trace T then the characteristic

polynomial of the corresponding rational point (K/Q, x) is

f = t3 − t2 + 1
3
(1−N)t+ 1

27
(1 +N(T − 3)) ∈ Q[t].

Such a polynomial either has Galois group C3 or splits into three linear factors over Q,
with at most two linear factors being the same. Conversely, a monic trace-one polynomial
f = t3− t2+ at+ b ∈ Q[t] which either has Galois group C3 or splits into three linear factors

5In terms of Galois cohomology, the non-cohomologous 1-cocycles in H1(Q, C3) corresponding to the
C3-algebras K and K ′ have the same image under the canonical map H1(Q, C3) → H1(Q, S3) because the
outer automorphism of C3 is realized by S3-conjugation.
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over Q, with at most two linear factors being the same, can be expressed in this way for
precisely two rational points of T if f has no repeated roots, or for precisely one rational
point of T if f has a double root which is not a triple root. The elements u+ vζ ∈ Q(

√
−3)×

corresponding to f will be the roots of the quadratic polynomial

g = t2 −
(
3− 1− 27b

1− 3a

)
t+ 1− 3a ∈ Q[t].

The polynomial f will have integral coefficients if and only ifu2 + v2 − uv ∈ 1 + 3Z and

(u2 + v2 − uv)(3− 2u+ v) ∈ 1 + 27Z.

Moreover, setting H(f) :=
√
1− 3a, we have the following discriminant relation:

disc(g) ·H(f)4 = −33 · disc(f).

This parametrization (specifically the characterization of integrality) will end up being im-
portant for evaluating the multiplicative Poisson summation formula.

5.4 An integral Diophantine problem

Let us state our solution to the integral Diophantine problem.

Let A3 = SpecQ[X,Y, Z] and P2 = P(A3) = ProjQ[X,Y, Z] be equipped with the regular
action of C3. Consider the quotient surface

S = P2/C3.

One can show that S is a toric compactification of T .

Let D0 be the divisor {ε := X + Y + Z = 0} ⊂ S. A rational point P of S − D0 is D0-
integral if every regular function in O(SZ − D0) = Z[X/ε, Y/ε]C3 is Z-valued on P . Note
that T ⊂ S −D0.
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Cubic f Quadratic g disc(f) disc(g) H(f)2

t3 − t2 t2 − 2t+ 1 0 0 1

t3 − t2 − t+ 1 t2 + 4t+ 4 0 0 4

t3 − t2 − 2t+ 1 t2 + t+ 7 72 −1 · 33 7

t3 − t2 − 2t t2 − 20
7
t+ 7 22 · 32 −1 · 22 · 35 · 7−2 7

t3 − t2 − 4t+ 4 t2 + 70
13

t+ 13 24 · 32 −1 · 24 · 35 · 13−2 13

t3 − t2 − 4t− 1 t2 − 5t+ 13 132 −1 · 33 13

t3 − t2 − 5t− 3 t2 − 8t+ 16 0 0 16

t3 − t2 − 6t+ 7 t2 + 7t+ 19 192 −1 · 33 19

t3 − t2 − 6t t2 − 56
19

t+ 19 22 · 32 · 52 −1 · 22 · 35 · 52 · 19−2 19

t3 − t2 − 8t+ 12 t2 + 10t+ 25 0 0 25

...
...

...
...

...
t3 − t2 − 190t+ 719 t2 + 31t+ 571 72 · 5712 −1 · 33 · 72 571

t3 − t2 − 190t− 800 t2 − 23312
571

t+ 571 22 · 32 · 52 · 72 · 132 −1 · 22 · 35 · 52 · 72 · 132 · 571−2 571

t3 − t2 − 192t+ 720 t2 + 17710
577

t+ 577 26 · 36 · 192 −1 · 26 · 39 · 192 · 577−2 577

t3 − t2 − 192t− 171 t2 − 11t+ 577 34 · 5772 −1 · 37 577

t3 − t2 − 196t+ 1124 t2 + 922
19

t+ 589 24 · 312 −1 · 24 · 33 · 19−2 589

t3 − t2 − 196t+ 1109 t2 + 1483
31

t+ 589 74 · 192 −1 · 33 · 74 · 31−2 589

t3 − t2 − 196t+ 539 t2 + 673
31

t+ 589 72 · 192 · 372 −1 · 33 · 72 · 31−2 · 372 589

t3 − t2 − 196t+ 349 t2 + 13t+ 589 34 · 192 · 312 −1 · 37 589

t3 − t2 − 196t+ 196 t2 + 3526
589

t+ 589 24 · 32 · 52 · 72 · 132 −1 · 24 · 35 · 52 · 72 · 132 · 19−2 · 31−2 589

t3 − t2 − 196t− 704 t2 − 20774
589

t+ 589 24 · 36 · 52 · 72 −1 · 24 · 39 · 52 · 72 · 19−2 · 31−2 589

Figure 3: Some f ∈ Z[t] with Galois group C3 and the characteristic polynomials g ∈ Q[t]
of their corresponding elements in Q(

√
−3).

Theorem 5.8. For a certain canonical height function H on S, we have

∑
P∈T (Q),

D0-integral

H(P )−s =

(
1− 1

3z

)2

ζQ(
√
−3)(z)

2
∏

q≡2 (mod 3)

(
1− 1

q2z

) ∏
p≡1 (mod 3)

(
1− 3

p2z
+

2

p3z

)

where z = s
2

and ζQ(
√
−3) is the Dedekind zeta function of Q(

√
−3). This height zeta function

can be meromorphically continued to the half-plane Re(s) > 1 and its only pole in this region
is at s = 2 with order 2. If n ∈ Z≥1 is not divisible by 3, then the number of D0-integral
rational points on T with height

√
n is equal to∑
d|n

3ω(P1(d))(−1)Ω(P2(d)).

5.5 Toric height functions

It would not be possible to obtain a nice closed expression for
∑
H(P )−s if one used a

standard height function such as the max of the absolute values of the coordinates.
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We briefly explain the theory of canonical heights on toric varieties, first introduced by
[BT95]. Let S = P2/C3 be our toric surface, and suppose we are given a morphism φ : S →
PN . This gives us a height on S:

Hφ : S(Q) → R>0

P 7→ Hφ(P ) = HPN
(φ(P ))

where HPN
is the standard height function on PN .

To obtain a nicer height, we diagonalize this morphism for the action of T .

Let V denote the (finite-dimensional) vector space of rational functions v on S of the form

v = φ∗s = s ◦ φ

where s is any linear homogeneous function in the N +1 projective coordinates on PN . The
space V is naturally a representation of T :

(t · v)(P ) = v(t−1P ).

Since T is abelian, we may diagonalize its action on V . Suppose that v0, . . . , vN ∈ V are
weight vectors which form a basis, and use these as coordinates for a new morphism φv:

φv(P ) = [v0(P ) : · · · : vN(P )].

Since φ and φv are related by an automorphism of PN , their height functions are equivalent,
i.e.

logHφ = logHφv +O(1).

The morphism φv is equivariant, i.e. there is a homomorphism ψ : T → GN+1
m (the weights

of the weight basis) such that φv(t · P ) = ψ(t)φv(P ).

Definition 5.9. A toric height function on S is a height of the form Hφ for some equivariant
morphism φ : S → PN .

By a direct computation, one can prove the following.

Lemma 5.10. There is an equivariant morphism φ : S → P3 (defined over Q(
√
−3)) whose
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coordinates are the following four weight vectors:

e31, e31 − 3e2e1, e31 − 9
2
e1e2 +

27
2
e3 +

√
−27
2

√
disc, e31 − 9

2
e1e2 +

27
2
e3 −

√
−27
2

√
disc

where
√
disc = (X−Z)(Y −X)(Z−Y ) and e1, e2, e3 are the elementary symmetric functions

in X,Y, Z. Let H0 be the toric height on S associated to this equivariant morphism. If
(K/Q, x) is a D0-integral rational point of T , then

H0(K/Q, x) = (1− 3a)3/2

where t3 − t2 + at+ b = Char(K/Q, x).

One can show that H = H
1/3
0 is equivalent to the “root height” max(|a|1/2, |b|1/3).

Toric height functions can be canonically extended to adelic height functions. This means
that there are local height functions

Hv : T (Qv) → R>0

such that the product defines a global (adelic) height function on T (A),

H =
∏
v

Hv : T (A) → R>0,

whose restriction to T (Q) ⊂ T (A) is the original toric height.

Since the condition of being integral is a local condition, it is also possible to define a locally
constant function 1 = 1D0 on T (A) such that

1((tv)v) =

1 if v = p finite and φ(tp) ∈ Zp for any φ ∈ O(SZ −D0),

0 otherwise.

Adelic multiplicative Poisson summation

We would like to exploit the fact that the Dirichlet series

Z(s) = Z(e; s) =
∑

P∈T (Q),
D0-integral

H(P )−s =
∑

P∈T (Q)

1(P )H(P )−s
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can be regarded as the value at x = e of an automorphic function on T (A):

Z(x; s) =
∑

P∈T (Q)

1(xP )H(xP )−s.

For this purpose we will make use of an abstract form of the Poisson summation formula.
Let B be a locally compact abelian group with Haar measure db. Let f ∈ L1(B). The
Fourier transform of f given by

f̂(χ) =

∫
B

f(b)χ(b)−1 db

converges and defines a continuous function on B∨.

Now let A be a closed subgroup of B and let A⊥ ⊂ B∨ denote the subgroup of characters
on B that are trivial on A. The general Poisson summation formula — following from the
classical proof for Z ⊂ R — says that if f̂ |A⊥ ∈ L1(A⊥) then∫

A

f(ab) da =

∫
A⊥
f̂(χ)χ(b) dχ

for a.e. b ∈ B and suitably normalized Haar measure on A⊥ [Fol95, Theorem 4.4.2, p. 105].

We apply this to the discrete (and hence closed) subgroup T (Q) ⊂ T (A) to obtain a formula
for the integral of f over T (Q):∫

T (Q)

f(xy) dx =

∫
T (Q)⊥

f̂(χ)χ(y) dχ =

∫
(T (Q)\T (A))∨

f̂(χ)χ(y) dχ

for a.e. y ∈ T (Q) and suitably normalized Haar measure dχ on T (Q)⊥ [Fol95, Theorem 4.4.2,
p. 105].

We take f to be

x 7→ f(x) = H(x,−s,D0) = H(x)−s1(x) (x ∈ T (A)).

The function H(x,−s,D0) is factorizable so its Fourier transform is equal to the product of
the transforms of its local factors:

Ĥ(χ,−s,D0) =
∏

v∈MQ

Ĥv(χv,−s,D0).
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Note that in Tate’s thesis, Poisson summation is applied additively for the discrete subgroup
E ⊂ AE. While AE is self-dual, the multiplicative group T (A) is not self-dual, so we will need
to work harder to compute the Fourier transform in our multiplicative setting. (Recall that
class field theory seeks to describe the automorphic characters of T (A) when T = RE

QGm.)

5.6 Proof of Theorem 5.8

We must describe automorphic forms on T , i.e. elements of the dual of the automorphic
quotient T (Q)\T (A). This is well-known. Our function H(x,−s,D0) is invariant under the
action of an open compact subgroup K (of index six in the maximal compact subgroup), so
we need only describe automorphic forms of level K, i.e. (T (Q)\T (A)/K)∨.

Recall the “unexpected isomorphism” α : T
∼−→ RE

QGm. We obtain a continuous family of
such automorphic forms as follows:

χt(x) = |NE
Q (αx)|

t/2
AE
.

One can then prove that

(T (Q)\T (A)/K)∨ = {χt : t ∈ R} ∼= R

which amounts to showing that the ray class group for E (with modulus 3OE = α(K)) is
trivial.

Each local Fourier transform can be computed explicitly. The archimedean Fourier transform
Ĥ∞(χt,−s,D0) is a certain rational function in t and s, and Ĥp(χt,−s,D0) is a power series
in ps.

To evaluate the right-hand side of the Poisson formula, one multiplies together these local
Fourier transforms and then integrates over the automorphic forms χt using Cauchy’s residue
formula: ∫

(T (A)/T (Q))∨
Ĥ(χ,−s,D0) dχ =

∫
(T (A)/T (Q)/K)∨

Ĥ(χ,−s,D0) dχ

=

∫
R
Ĥ(χt,−s,D0) dt =

(
−1

2πi

)
3s

2πi

∑
η

η−s

∫
R

χt(η)
−1 dt

(t+ s
2πi

)(t− s
πi
)

(Cauchy’s residue formula) =
∑
η

η−sχ s
2πi

(η).
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Here η ∈ T (Af )/Kf
max

α−→ FracId(E) may be regarded (via α) as an (integral) ideal of OE

satisfying certain local conditions dictated by the local behavior of T (which can be seen
in its associated Galois representation). Expressing these local conditions and rearranging
some Euler factors obtains the theorem.

(Note that the very fact that η can be described by local conditions means that Z(s) has an
Euler product.)

By means of standard Tauberian methods, one obtains from Z(s) a (weighted) count for
possibly reducible C3-polynomials. To obtain Theorem 5.1 one subtracts off the count of
reducible polynomials (which correspond to integral points on a certain ellipse parametrizing
all trace-one points in Minkowski space with a given height). This is not difficult.

A refinement: the number of trace-one generators of a given cubic
abelian field

To prove the formula for Z(s), and hence the count for abelian cubics, it sufficed to use
the untwisted Poisson formula (i.e. y = 1). By making use of the twisting parameter, it
is possible to obtain a refined formula which counts the number of monic trace-one abelian
cubics which generate a fixed cubic abelian field.

Fix an abelian cubic number field K which is tamely ramified over Q and let FK denote the
set of polynomials of the form t3 − t2 + at+ b ∈ Z[t] whose associated root field is K. Recall
that for such polynomials we necessarily have a ≤ 0 and we set H(t3− t2+at+b) =

√
1− 3a

(“toric height”).

Theorem 5.11. Let DK denote the discriminant of K. We have that∑
f∈FK

H(f)−2s = D−s
K (1− 3−s)ζQ(

√
−3)(s).

If t3 − t2 + at + b ∈ FK then a ≤ 0 and DK divides 1 − 3a. Fix a ∈ Z≤0. The number of
polynomials of the form t3− t2+ at+ b ∈ FK for any b ∈ Z is equal to the number of integral
ideals in Q(

√
−3) with norm N = (1− 3a)D−1

K . Explicitly,

#{ f = t3 − t2 + at+ b : b ∈ Z, Kf
∼= K } = σ0

(
P1

(
1− 3a

DK

))
.

where σ0(P ) is the number of divisors of P and P1(N) is the largest divisor of N only divisible
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by primes ≡ 1 (mod 3).

Remarkably, we conclude that the number of trace-one monic polynomials with a given
linear coefficient that generate K is essentially independent of K and only depends on the
arithmetic of Q(

√
−3). This is illustrated in the table below of all trace-one monic integral

cubic polynomials with H(f) ≤ 25 which generate either K49 = Q(ζ7)
+ or K169 = Q[t]/(t3−

t2 − 4t− 1).

H(f)2 f : Kf = K49

7× 1 t3 − t2 − 2t+ 1

7× 4 t3 − t2 − 9t+ 1

7× 7 t3 − t2 − 16t+ 29, t3 − t2 − 16t− 13

7× 13 t3 − t2 − 30t+ 43, t3 − t2 − 30t− 41

7× 16 t3 − t2 − 37t+ 29

7× 19 t3 − t2 − 44t+ 127, t3 − t2 − 44t− 83

7× 25 t3 − t2 − 58t− 13

7× 28 t3 − t2 − 65t+ 169, t3 − t2 − 65t− 167

7× 31 t3 − t2 − 72t+ 169, t3 − t2 − 72t− 41

7× 37 t3 − t2 − 86t+ 337, t3 − t2 − 86t− 251

7× 43 t3 − t2 − 100t+ 113, t3 − t2 − 100t− 181

H(f)2 f : Kf = K169

13× 1 t3 − t2 − 4t− 1

13× 4 t3 − t2 − 17t+ 25

13× 7 t3 − t2 − 30t+ 25, t3 − t2 − 30t− 53

13× 13 t3 − t2 − 56t+ 181, t3 − t2 − 56t+ 25

13× 16 t3 − t2 − 69t− 131

13× 19 t3 − t2 − 82t+ 155, t3 − t2 − 82t− 235

13× 25 t3 − t2 − 108t+ 337

13× 28 t3 − t2 − 121t+ 545, t3 − t2 − 121t− 79

13× 31 t3 − t2 − 134t− 131, t3 − t2 − 134t− 521

13× 37 t3 − t2 − 160t+ 467, t3 − t2 − 160t− 625

13× 43 t3 − t2 − 186t+ 961, t3 − t2 − 186t+ 415

The method is similar to what we did for Z(s).

We explain where the twisting parameter comes from. The point is that we will approximate
a rational point (K, x) on T with an adelic point yK on G. Let x be any normal element of
K.

A classical theorem of Noether asserts that K is tamely ramified if and only if OK admits a
normal basis. If x is part of a normal integral basis, then (K, x) is in the maximal compact
subgroup of T (A).

The existence of a normal integral basis implies that

(K ⊗Qp, x) = ypkp

where yp ∈ G(Qp) is the change of normal basis from Gx to a p-integral normal basis.
Since K/Q is split at infinity, the real point (K ⊗ R, x) ∈ T (R) is equal to π(y∞) for some
y∞ ∈ G(R) where π : G → T is the natural quotient morphism. Then

(K, x) = yKk

where yK = (yv)v ∈ G(A) and k = (kv)v ∈ K.
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Crucially, we have H((K, x)) = H(yK), where now yK is in G(A) rather than T (A).

The twisted Poisson formula for f(t) = H(t(K, x),−s,D0) with y = yK implies that

∑
f∈FK

H(f)−s =
∑

t∈G(Q)

H(t(K, x),−s,D0) =

∫
G(Q)⊥

f̂(χ)χ(yK) dχ.

The rest of the computation proceeds similarly with G in place of T .
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