
A proof of the Jacobi triple product formula

ANDREW O’DESKY

Abstract. This expository note explains a combinatorial proof of the Jacobi
triple product formula which is motivated by physics.

Jacobi triple product formula (1829)

∞∏
n=1

(1− q2n)(1 + q2n−1z)(1 + q2n−1z−1) =
∑
N∈Z

qN
2

zN

To prove this formula, we will follow an exposition of P. Cameron [1, §13.3]
while adding some explanatory details along the way. Cameron attributes the
argument to R. Borcherds.

The Dirac Sea

First we define the objects and notions in our toy physical model.
Define the vacuum state |0〉 to be the set of negative half-integers,

|0〉 := {−1
2
,−3

2
,−5

2
, . . .} ⊂ 1

2
+ Z.

Define a state to be a subset |ψ〉 ⊂ 1
2
+ Z whose symmetric difference with |0〉

is finite. The elements of |ψ〉 which are not in |0〉 are particles, while the elements
of |0〉 which are not in |ψ〉 are antiparticles.

Define the particle number N of a state |ψ〉 to be the number of particles minus
the number of antiparticles.

Define the energy E of a state |ψ〉 to be

E =
∑

{ν : ν ∈ |ψ〉 , ν > 0} −
∑

{ν : ν /∈ |ψ〉 , ν < 0} ∈ 1
2
Z≥0.

Note that the energy is zero if and only if |ψ〉 is the vacuum state. The number
of states with energy below some bound is always finite.
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The proof

The proof will be carried out by studying the two-variable generating function
which counts all possible states. We will express this generating function in two
different ways. The comparison of the two resulting formulas yields the triple
product formula.

Let g(E,N) be the number of states with energy E and particle number N .
We will index through all possible states using two formal variables q and z whose
exponents record the energy and particle number. The generating function is∑

E∈1
2
Z≥0

∑
N∈Z

g(E,N)qEzN = 1 +
(
z−1 + z

)
q
1
2 + q +

(
z−1 + z

)
q
3
2 +

(
z−2 + 2 + z2

)
q2 +

(
2z−1 + 2z

)
q
5
2 +O(q3). (A)

The easier way
Consider the infinite product,

∞∏
n=0

(1 + qn+
1
2 z).

When this product is expanded, the coefficient of the monomial qEzN will equal
the number of ways to obtain E as a sum of N positive half-integers. Each
such combination can be associated with the unique state having no antiparticles
whose particles are given by the half-integers in the combination.

We can include all states having a general combination of particles and an-
tiparticles by using the product over z and z−1,

∞∏
n=0

(1 + qn+
1
2 z)︸ ︷︷ ︸

particle with energy n+ 1
2

∞∏
n=0

antiparticle with energy n+ 1
2︷ ︸︸ ︷

(1 + qn+
1
2 z−1) =

∞∏
n=0

(1+qn+
1
2 z)(1+qn+

1
2 z−1).

We thus have the following identity of formal power series,
∞∏
n=0

(1 + qn+
1
2 z)(1 + qn+

1
2 z−1) =

∑
E∈1

2
Z≥0

∑
N∈Z

g(E,N)qEzN . (B)

The harder way
For a given particle number N ∈ Z, there is a unique state |N〉 of particle

number N with the distinction of having minimal energy among all other states
of particle numberN . We will describe a bijection between the set of all states and
the set of all pairs (|N〉 , λ) where N ∈ Z and λ is a partition, i.e. a monotonically
decreasing sequence of nonnegative integers λ1 ≥ λ2 ≥ · · · which is eventually
zero. This will lead to our second formula for (A).
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The minimal energy state |N〉 is given by

|N〉 = {ν ∈ 1
2
+ Z : ν < N}

(note that this also works for negative N). The energy of the minimal energy
state |N〉 is 1

2
N2.

Given a state |ψ〉, let |ψ〉 denote the ‘dual’ state with the particles and antipar-
ticles reversed (thus |N〉 = |−N〉). Under duals, we have E 7→ E and N 7→ −N .

Consider a partition λ. We use λ to ‘excite’ the (anti)particles of |N〉 as follows.
If N is nonnegative, we shift the largest element of |N〉 up by λ1, shift the next
largest element of |N〉 up by λ2, and so on. If N is negative, we apply the above
procedure to the dual state |N〉, and then take the dual again (this is the same
as shifting ‘holes’ in |N〉 downward). This results in a state |N, λ〉 with the same
particle number and energy E = 1

2
N2 + |λ| where |λ| := λ1 + λ2 + · · · .

Conversely, suppose |ψ〉 is a state with particle number N and energy E.
Suppose N is nonnegative. Let λ1 be the distance between the largest element
of |ψ〉 and the largest element of |N〉, let λ2 be the distance between the second
largest element of |ψ〉 and the second largest element of |N〉, and so on. Every λi
is nonnegative and the sequence λi is monotonically decreasing, so we obtain a
partition λ. Exciting the minimal energy state |N〉 according to λ recovers |ψ〉.
If N is negative, then applying the above to |ψ〉 shows that λ takes |−N〉 to |ψ〉,
hence takes |N〉 to |ψ〉.

We have thus described a bijection between the set of all states and the set of
all pairs (|N〉 , λ) where N ∈ Z and λ is a partition. Given a pair (|N〉 , λ), the
corresponding state has energy E = 1

2
N2 + |λ|. Let p(n) denote the number of

partitions λ with |λ| = n. For any given N ∈ Z, we have
∞∑
n=0

p(n)q
1
2
N2+n =

∑
E∈1

2
Z≥0

g(E,N)qE.

By multiplying both sides by zN and summing over N ∈ Z, we obtain our second
formula for our original generating function (A),(∑

N∈Z

q
1
2
N2

zN

)(
∞∑
n=0

p(n)qn

)
=

∑
E∈1

2
Z≥0

∑
N∈Z

g(E,N)qEzN . (C)

Finishing the proof
With the help of the well-known identity for the generating function of parti-

tions (cf. e.g. [1, (13.1.1)]),
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
,
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we can rewrite (C) as(∑
N∈Z

q
1
2
N2

zN

)(
∞∏
n=1

1

1− qn

)
=
∑
N∈Z

∑
E∈1

2
Z≥0

g(E,N)qEzN .

By combining this with (B), we have that
∞∏
n=0

(1 + qn+
1
2 z)(1 + qn+

1
2 z−1) =

(∑
N∈Z

q
1
2
N2

zN

)(
∞∏
n=1

1

1− qn

)
.

Now we just reindex the left-hand side and rearrange to obtain
∞∏
n=1

(1− qn)(1 + qn−
1
2 z)(1 + qn−

1
2 z−1) =

∑
N∈Z

q
1
2
N2

zN .

Replacing q with q2 yields the triple product formula.

Macdonald Identities

The Jacobi triple product formula is one identity among many. In fact, to
any “affine root system” there is an associated product identity (the “Macdonald
identity” of the affine root system, cf. [3]). The Jacobi triple product formula
corresponds to the “affine root system of type A(1)

1 ”. Do Macdonald identities of
other affine root systems admit similarly physical interpretations? For instance,
the Macdonald identity associated to the “affine root system of type A(2)

2 ” is
∞∏
n=1

(1− qn)(1− qnz)(1− qn−1z−1)(1− q2n−1z2)(1− q2n−1z−2)

=
∑
N∈Z

q(3N
2+N)/2(z3N − z−3N−1).

For more on this “quintuple product formula” see [2].
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