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1. Introduction

Today I’ll explain how to use the Hodge–Tate decomposition from p-adic Hodge theory
to prove the following theorem [4].1

Theorem A. Smooth proper varieties defined over a characteristic zero field with the same
point counts over almost all finite fields have the same Hodge numbers.

The condition means X and Y can be spread out to schemes X and Y over a finitely
generated subring R of the defining field such that #X (F`) = #Y(F`) for all but finitely
many closed points ` ∈ SpecR. Afterwards we’ll prove the following theorem of Batyrev [1]
using p-adic integration.

Theorem B. Smooth projective Calabi–Yau varieties over a characteristic zero field that
are birational have the same point counts over almost all finite fields.

The theorems jointly prove that Hodge numbers are birational invariants for smooth
projective Calabi–Yau varieties.

2. The Hodge–Tate decomposition

Let K/Qp be a finite extension and let Cp be the completion of an algebraic closure K
of K. Let GK = G(K/K) be the absolute Galois group of K.

Theorem 2.1 (Hodge–Tate decomposition). Let X/K be a smooth proper variety. For
any integer k there is an isomorphism of GK-modules

Hk
et(XK ,Qp)⊗Qp Cp

∼=
⊕
i+j=k

Hj(X,Ωi
X/K)(−i)⊗K Cp (1)

where σ ∈ GK acts by σ ⊗ σ and Hj(X,Ωi
X/K) has trivial GK-action.

Date: October 6, 2023. Lecture notes for a talk in a p-adic Hodge Theory Workshop.
1These notes contain nothing original. For the most part our exposition follows [4].
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Computing the dimensions on both sides shows that the sum over Hodge numbers∑
i h

i,k−i is equal to dimQp H
k
et(XK ,Qp) — observe that we have proven this without com-

paring to singular cohomology.
Note the uniformizing effect of tensoring with Cp: the GK-module Hk

et(XK ,Qp) can be
quite complicated but becomes a direct sum of Tate twists of Cp after tensoring with Cp.

An important consequence of this theorem is that individual Hodge numbers can be
recovered from the GK-module structure on p-adic etale cohomology.

Corollary 2.2 (Tate [6]). Set BHT = ⊕i∈ZCp(i) (period ring). We have that
(1)

(
H i+j
et (XK ,Qp)(i)⊗Qp Cp

)GK ∼= Hj(X,Ωi
X/K),

(2) dimK(H
k
et(XK ,Qp)⊗Qp BHT )

GK = dimQp H
k
et(XK ,Qp).

Proof. By Galois theory CGK
p = K, while for j 6= 0 Tate [6] showed that

Cp(j)
GK = 0. (2)

Both claims now easily follow from the Hodge–Tate decomposition since Hj(X,Ωi
X/K) is

seen to be the degree zero (GK-invariant) subspace of H i+j
et (XK ,Qp)(i)⊗Qp Cp. �

Motivated by (1) we define the ith Hodge number of a finite dimensional GK-module V
over Qp to be

hiV = dimK(V (i)⊗Qp Cp)
GK . (3)

Motivated by (2) we say V is Hodge-Tate if its dimension is equal to the sum of its Hodge
numbers, i.e. if

dimK(V ⊗Qp BHT )
GK = dimQp V.

Tate showed that for any finite-dimensional GK-representation V over Qp,

dimK(V ⊗Qp BHT )
GK ≤ dimQp V.

We use this to prove a few useful facts.

Lemma 2.3. The class of Hodge–Tate representations is closed under submodules and
quotients. Hodge numbers are additive on short exact sequences of Hodge–Tate represen-
tations.

In particular, hi factors through the Grothendieck group K0(HT ) of Hodge–Tate p-adic
GK-representations. Since [V ] = [V ss] in K0(HT ) where V ss is the semisimplification2 of
V , this shows that V and V ss have the same Hodge numbers.

Proof. Let V be a Hodge–Tate finite dimensional GK-representation over Qp. Let

0 −→ V ′ −→ V −→ V ′′ −→ 0 (4)
2The direct sum of all the simple subquotients of V arising in a Jordan–Hölder series
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be a short exact sequence of finite dimensional GK-representations over Qp. The functor
D = DHT : V 7→ (V ⊗BHT )

GK is left-exact which implies

dimK D(V ) ≤ dimK D(V ′)+dimK D(V ′′) ≤ dimQp V
′+dimQp V

′′ = dimQp V = dimK D(V ).

(5)
This shows that V ′ and V ′′ are Hodge–Tate. For dimension reasons D is exact:

0 −→ D(V ′) −→ D(V ) −→ D(V ′′) −→ 0. (6)

Each of these K-vector spaces has a grading inherited from BHT and passing to the degree
i components proves that hiV = hiV ′ + hiV ′′. �

3. Proof of Theorem A

Our exposition of this proof follows Katz [3, Appendix].
Recall that we may spread out X and Y to schemes f : X → SpecR and g : Y → SpecR

over a finitely generated characteristic zero ring R such that #X (F`) = #Y(F`) for all
but finitely many closed points ` ∈ SpecR. By inverting an element of R if needed, we
may assume that each of the schemes X and Y is proper and smooth over R and that
#X (F`) = #Y(F`) for all closed points ` ∈ SpecR.

Moreover, there is a prime p such that R can be mapped injectively into the ring of
integers O of a finite extension K/Qp.Fix such a prime p.

We will use Frobenius automorphisms at points ` away from p to show that

Hk
et(XK ,Qp)

ss ∼= Hk
et(YK ,Qp)

ss. (7)

as GK-representations. Over SpecR[1/p], the sheaves

Rkf∗Qp and Rkg∗Qp (8)

are lisse and pure of weight k [2, (3.3.9)]. Pure of weight k means that for any geometric
point ` with image ` ∈ SpecR[1/p], any eigenvalue of the geometric Frobenius automor-
phism F` ∈ G(F`/F`) on either of the stalks (Rkf∗Qp)` or (Rkg∗Qp)` is an algebraic integer
with complex absolute value

√
|F`|

k for any field embedding Qp → C.
By proper base change for cohomology we have isomorphisms of G(F`/F`)-modules

(Rkf∗Qp)`
∼= Hk(XF`

,Qp) and (Rkg∗Qp)`
∼= Hk(YF`

,Qp). (9)

By the Grothendieck–Lefschetz trace formula, the automorphism F` has identical traces
on the (virtual) π1(SpecR[1/p])-representations∑

k≥0

(−1)kRkf∗Qp and
∑
k≥0

(−1)kRkg∗Qp. (10)
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By purity, we can separate by weight to see that F` has identical traces on each

Rkf∗Qp and Rkg∗Qp. (11)

By the Chebotarev density theorem, the conjugacy classes of the Frobenius elements [F`]

equidistribute in the measure space of conjugacy classes of π1(SpecR[1/p]); in particu-
lar, they form a dense subset so these representations have the same character. Finite
dimensional semisimple representations are determined by their characters so

(Rkf∗Qp)
ss ∼= (Rkg∗Qp)

ss as π1(SpecR[1/p])-modules. (12)

Let k denote the geometric point corresponding to R → R[1/p] → K → K. Another use
of proper base change shows that

Hk
et(XK ,Qp)

ss ∼= (Rkf∗Qp)
ss
k
∼= (Rkg∗Qp)

ss
k
∼= Hk

et(YK ,Qp)
ss as GK-modules. (13)

Hodge numbers don’t change under semisimplification so Hk
et(XK ,Qp) and Hk

et(YK ,Qp)

have the same Hodge numbers as GK-modules. By the Hodge–Tate decomposition at p this
means XK and YK have the same Hodge numbers.3

Remark 1. The auxiliary prime p in the proof can be chosen to be arbitrarily large, in
particular larger than either the dimension of X or Y or the discriminant of the “algebraic
part” of R, in which case one can use an earlier theorem of Fontaine–Messing rather than
the general form of the Hodge–Tate decomposition stated here.

Remark 2. There is an example4 showing that equal point-counts for all finite fields of a
single characteristic is not enough to determine Hodge numbers.

4. Example

Let P2 denote the projective plane and let q be a prime. Let X denote the result of
blowing up P2 along the two points

(1 :
√
q : 1) ∪ (1 : −√

q : 1). (14)

Let χ =
(
q
·

)
denote the quadratic character associated to Q(

√
q). Let p be another prime

which is not 2 or q. If χ(p) = 1, then X(Fp) looks like

figure with two spirals (15)

and has p2 + 3p+ 1 Fp-points. If χ(p) = −1, then X(Fp) looks like

figure with usual projective plane (16)
3Note that choosing a different embedding R → C will not alter the Hodge numbers (though it will change
the associated periods).
4https://mathoverflow.net/questions/92958

https://mathoverflow.net/questions/92958
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and has p2 + p+ 1 Fp-points. The cohomology of X only differs from P2 in cohomological
degree 2, where it becomes isomorphic to

H2(P2,Qp)⊕H0(SpecQ(
√
q),Qp)(−1) = Qp(−1)⊕ (Qp ⊕Qp(χ))(−1). (17)

Thus the nonzero p-adic cohomology groups are given by

H0 = Qp, H2 = Qp(−1)⊕ (Qp ⊕Qp(χ))(−1), H4 = Qp(−2) (18)

as GQp-modules.
We see the second Betti number went up by two since we blew up two points, and as a

Galois representation the “new” piece is H0(SpecQ(
√
q),Qp)(−1) = (Qp ⊕Qp(χ))(−1).

What about the Hodge–Tate decomposition? We claim that Qp(χ)⊗Cp
∼= Cp as GQp-

modules where GQp acts diagonally on the left and in the usual manner on the right. Let
gχ =

∑
k∈Fp

χ(k)e2πik/p be the Gauss sum of χ at p. The Gauss sum is a nonzero algebraic
integer with the property that for any σ ∈ GQp ,

σgχ = χ(σ)−1gχ. (19)

Now consider the map

Qp(χ)⊗Cp → Cp (20)

a⊗ x 7→ axgχ−1 . (21)

This is clearly an isomorphism of groups and for any σ ∈ GQp we have

σ(a⊗ x) = χ(σ)a⊗ σ(x) 7→ χ(σ)aσ(x)gχ = σ(axgχ), (22)

so this is an isomorphism of GK-modules which has “ironed out” the interesting arithmetic
part of the p-adic cohomology of X.

The Hodge–Tate decomposition for the middle-degree cohomology is

H2 ⊗Cp = Cp(−2)⊕0 ⊕Cp(−1)⊕3 ⊕Cp(0)
⊕0 (23)

which gives the correct Hodge numbers.

Remark 3. Note the difference between χ and the p-adic cyclotomic character. By Tate’s
computation for Cp(1)

GK , there is no nonzero “Gauss sum” g ∈ Cp(1)
GK for the p-adic

cyclotomic character.

5. Proof of Theorem B

Our exposition of p-adic integration and Weil’s theorem follows [5, Ch. 3].



6 ANDREW O’DESKY

p-adic integration. Let O be the ring of integers in K with residue field F of cardinality
q. Let X be a smooth scheme over O of relative dimension d.5 We need not assume X is
proper. Since X is smooth, X (K) naturally has the structure of a “p-adic manifold”, i.e. any
point has an open neighborhood which is homeomorphic to Od. The analytic structure on
Od carries over to X (K) in the usual way, giving us sheaves of analytic functions and
differential forms on X (K).

In one respect the situation is better than for real manifolds. For one there is a canonical
open compact submanifold X (O) ⊂ X (K). Now consider a bianalytic map F : Od → Od.
Since

Jac(F ◦ F−1) = 1 = Jac(F )Jac(F−1) (24)

its Jacobian is valued in O×, i.e. |Jac(F )| = 1 for a change of variables F . This will imply
the existence of a canonical measure on the canonical compact submanifold X (O).

The first step is to assign measures to d-forms. Let U ⊂ X (K) be an open subset
equipped with a chart ϕ : U ∼−→ Od. If ω is a regular d-form on U then

ω ◦ ϕ−1 = g(x) dx1 ∧ · · · ∧ dxd (25)

for an analytic function g on U , and we define∫
U

|ω| :=
∫
Od

|ω ◦ ϕ−1| =
∫
Od

|g(x)| dµHaar (26)

where µHaar is the normalized Haar measure on Od. This integral is independent of the
choice of ϕ since |Jac(ϕ′ ◦ ϕ−1)| = 1 for another chart ϕ′. These local measures glue to
form a measure µω on X (K) which only depends on ω. We have proven that:

Any regular d-form ω on X (K) induces a Borel measure µω on X (K) where the measure
of an analytic function f on a compact open subset U is∫

U

|f | dµω :=

∫
U

|fω|. (27)

A canonical p-adic measure. Now we use these measures to construct a canonical
measure on X (O). The idea is to locally trivialize Ωd

X/O (not just Ωd
XK/K

!) and glue the
resulting measures over X (O).

Theorem 5.1 (Weil [8]).
(1) There is a canonical Borel measure µcan on X (O) with the property that for any

Zariski open subset Y ⊂ X and any regular nonvanishing d-form ω on Y/O, µcan

and µω agree for any analytic function f on a compact open subset U ⊂ Y(O).
5We say X → S is smooth of relative dimension d if X → S is smooth and all non-empty fibers are
equi-dimensional of dimension d.
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(2) The canonical measure of X (O) is

µcan(X (O)) =
|X (F)|
qd

. (28)

Trivializing Ωd
X/O over a Zariski open Y ⊂ X means finding a d-form ω which is non-

vanishing on Y/O. In particular, the restriction of ω to the special fiber of Y must be
nonvanishing, so locally on Y(O) the form ω looks like

g(y) dy1 ∧ · · · ∧ dyd (29)

where |g(y)| = 1. (Although g depends on the choice of chart the condition |g| = 1 does
not by the change of variables formula.)

Proof. Cover X by Zariski open subsets which are small enough to trivialize the canonical
bundle Ωd

X/O. Let Y ⊂ X be an open subset in the cover and let ω be a nonvanishing
d-form on Y/O. By the construction above we have the Borel measure µY,ω on Y(K). If
ω′ is another nonvanishing d-form on Y/O, then µY,ω′ = µY,ω on Y(O) since ω′

ω
is O×-

valued on Y(O). Thus we get a canonical measure µY,can on Y(O). For the same reason,
these canonical measures µY,can agree on overlaps of Zariski open subsets in the trivializing
cover, so they glue to a canonical measure µcan on X (O) = ∪YY(O) which will satisfy (1)
by construction.

To compute (2), a generalization of Hensel’s lemma implies that any set-theoretic section
of the reduction map r : X (O) → X (F) induces a homeomorphism

X (O) ∼= X (F)×md. (30)

This homeomorphism identifies µω on the left with the product of counting measure on
X (F) and Haar measure on the right. Thus for any x0 ∈ X (F) we have

µX ,ω(r
−1(x0)) =

∫
{x0}×md

|g(x) dx1 ∧ · · · ∧ dxd| = µHaar({x0} ×md) = q−d. (31)

By (1) this is also µcan(r
−1(x0)). Summing over x0 ∈ X (F) proves the formula. �

Proof of Theorem B. Spread out to smooth proper schemes X and Y of a fixed relative
dimension over a finitely generated characteristic zero ring R.For all but finitely many
closed points ` ∈ SpecR there is an embedding R → O = W (F`) such that X/O and Y/O
have trivial canonical bundles.
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Consider the diagram
Z

Γb

X Y

ψ φ

b

(32)

where b is a birational equivalence, Z is a resolution of singularities of the Zariski closure
of the graph Γb ⊂ X×Y of b, and ψ and φ are the compositions with the projection maps.
Since both canonical bundles are trivial,

ψ∗Ωd
X/O

∼= φ∗Ωd
Y/O (33)

(we say X and Y are K-equivalent). In other words, there are nonvanishing d-forms ωX

and ωY such that
ψ∗ωX = ψ∗ωY . (34)

Since µωX = µcan for a nonvanishing d-form by construction,

µX ,can(X (O)) = µZ,ψ∗ωX (Z(O)) = µY,can(Y(O)). (35)

This proves that #X (F) = #Y(F) by Weil’s formula.

Remark 4. The proof shows that K-equivalent smooth projective varieties have the same
point counts over almost all finite fields, so the restriction to birational Calabi–Yau varieties
is not really the natural context for this application of p-adic Hodge theory. In fact Wang
[7] has conjectured that K-equivalent smooth projective complex varieties have isomorphic
Chow motives, which would give a natural explanation for several of the results we have
discussed.
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