# Hodge numbers of birational Calabi-Yau varieties via $p$-adic Hodge theory 

ANDREW O'DESKY

## 1. Introduction

Today I'll explain how to use the Hodge-Tate decomposition from $p$-adic Hodge theory to prove the following theorem [4]. ${ }^{1}$

Theorem A. Smooth proper varieties defined over a characteristic zero field with the same point counts over almost all finite fields have the same Hodge numbers.

The condition means $X$ and $Y$ can be spread out to schemes $\mathcal{X}$ and $\mathcal{Y}$ over a finitely generated subring $R$ of the defining field such that $\# \mathcal{X}\left(\mathbf{F}_{\ell}\right)=\# \mathcal{Y}\left(\mathbf{F}_{\ell}\right)$ for all but finitely many closed points $\ell \in \operatorname{Spec} R$. Afterwards we'll prove the following theorem of Batyrev [1] using $p$-adic integration.

Theorem B. Smooth projective Calabi-Yau varieties over a characteristic zero field that are birational have the same point counts over almost all finite fields.

The theorems jointly prove that Hodge numbers are birational invariants for smooth projective Calabi-Yau varieties.

## 2. The Hodge-Tate decomposition

Let $K / \mathbf{Q}_{p}$ be a finite extension and let $\mathbf{C}_{p}$ be the completion of an algebraic closure $\bar{K}$ of $K$. Let $G_{K}=G(\bar{K} / K)$ be the absolute Galois group of $K$.

Theorem 2.1 (Hodge-Tate decomposition). Let $X / K$ be a smooth proper variety. For any integer $k$ there is an isomorphism of $G_{K}$-modules

$$
\begin{equation*}
H_{e t}^{k}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{C}_{p} \cong \bigoplus_{i+j=k} H^{j}\left(X, \Omega_{X / K}^{i}\right)(-i) \otimes_{K} \mathbf{C}_{p} \tag{1}
\end{equation*}
$$

where $\sigma \in G_{K}$ acts by $\sigma \otimes \sigma$ and $H^{j}\left(X, \Omega_{X / K}^{i}\right)$ has trivial $G_{K}$-action.

Date: October 6, 2023. Lecture notes for a talk in a p-adic Hodge Theory Workshop.
${ }^{1}$ These notes contain nothing original. For the most part our exposition follows [4].

Computing the dimensions on both sides shows that the sum over Hodge numbers $\sum_{i} h^{i, k-i}$ is equal to $\operatorname{dim}_{\mathbf{Q}_{p}} H_{e t}^{k}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right)$ - observe that we have proven this without comparing to singular cohomology.

Note the uniformizing effect of tensoring with $\mathbf{C}_{p}$ : the $G_{K}$-module $H_{e t}^{k}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right)$ can be quite complicated but becomes a direct sum of Tate twists of $\mathbf{C}_{p}$ after tensoring with $\mathbf{C}_{p}$.

An important consequence of this theorem is that individual Hodge numbers can be recovered from the $G_{K^{-}}$-module structure on $p$-adic etale cohomology.

Corollary 2.2 (Tate [6]). Set $B_{H T}=\oplus_{i \in \mathbf{Z}} \mathbf{C}_{p}(i)$ (period ring). We have that
(1) $\left(H_{e t}^{i+j}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right)(i) \otimes_{\mathbf{Q}_{p}} \mathbf{C}_{p}\right)^{G_{K}} \cong H^{j}\left(X, \Omega_{X / K}^{i}\right)$,
(2) $\operatorname{dim}_{K}\left(H_{e t}^{k}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} B_{H T}\right)^{G_{K}}=\operatorname{dim}_{\mathbf{Q}_{p}} H_{e t}^{k}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right)$.

Proof. By Galois theory $\mathbf{C}_{p}^{G_{K}}=K$, while for $j \neq 0$ Tate [6] showed that

$$
\begin{equation*}
\mathbf{C}_{p}(j)^{G_{K}}=0 \tag{2}
\end{equation*}
$$

Both claims now easily follow from the Hodge-Tate decomposition since $H^{j}\left(X, \Omega_{X / K}^{i}\right)$ is seen to be the degree zero $\left(G_{K}\right.$-invariant) subspace of $H_{e t}^{i+j}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right)(i) \otimes_{\mathbf{Q}_{p}} \mathbf{C}_{p}$.

Motivated by (1) we define the $i$ th Hodge number of a finite dimensional $G_{K}$-module $V$ over $\mathbf{Q}_{p}$ to be

$$
\begin{equation*}
h^{i} V=\operatorname{dim}_{K}\left(V(i) \otimes_{\mathbf{Q}_{p}} \mathbf{C}_{p}\right)^{G_{K}} \tag{3}
\end{equation*}
$$

Motivated by (2) we say $V$ is Hodge-Tate if its dimension is equal to the sum of its Hodge numbers, i.e. if

$$
\operatorname{dim}_{K}\left(V \otimes_{\mathbf{Q}_{p}} B_{H T}\right)^{G_{K}}=\operatorname{dim}_{\mathbf{Q}_{p}} V
$$

Tate showed that for any finite-dimensional $G_{K^{-}}$-representation $V$ over $\mathbf{Q}_{p}$,

$$
\operatorname{dim}_{K}\left(V \otimes_{\mathbf{Q}_{p}} B_{H T}\right)^{G_{K}} \leq \operatorname{dim}_{\mathbf{Q}_{p}} V .
$$

We use this to prove a few useful facts.
Lemma 2.3. The class of Hodge-Tate representations is closed under submodules and quotients. Hodge numbers are additive on short exact sequences of Hodge-Tate representations.

In particular, $h^{i}$ factors through the Grothendieck group $K_{0}(H T)$ of Hodge-Tate $p$-adic $G_{K}$-representations. Since $[V]=\left[V^{s s}\right]$ in $K_{0}(H T)$ where $V^{s s}$ is the semisimplification ${ }^{2}$ of $V$, this shows that $V$ and $V^{s s}$ have the same Hodge numbers.

Proof. Let $V$ be a Hodge-Tate finite dimensional $G_{K}$-representation over $\mathbf{Q}_{p}$. Let

$$
\begin{equation*}
0 \longrightarrow V^{\prime} \longrightarrow V \longrightarrow V^{\prime \prime} \longrightarrow 0 \tag{4}
\end{equation*}
$$


be a short exact sequence of finite dimensional $G_{K^{-}}$-representations over $\mathbf{Q}_{p}$. The functor $D=D_{H T}: V \mapsto\left(V \otimes B_{H T}\right)^{G_{K}}$ is left-exact which implies
$\operatorname{dim}_{K} D(V) \leq \operatorname{dim}_{K} D\left(V^{\prime}\right)+\operatorname{dim}_{K} D\left(V^{\prime \prime}\right) \leq \operatorname{dim}_{\mathbf{Q}_{p}} V^{\prime}+\operatorname{dim}_{\mathbf{Q}_{p}} V^{\prime \prime}=\operatorname{dim}_{\mathbf{Q}_{p}} V=\operatorname{dim}_{K} D(V)$.

This shows that $V^{\prime}$ and $V^{\prime \prime}$ are Hodge-Tate. For dimension reasons $D$ is exact:

$$
\begin{equation*}
0 \longrightarrow D\left(V^{\prime}\right) \longrightarrow D(V) \longrightarrow D\left(V^{\prime \prime}\right) \longrightarrow 0 . \tag{6}
\end{equation*}
$$

Each of these $K$-vector spaces has a grading inherited from $B_{H T}$ and passing to the degree $i$ components proves that $h^{i} V=h^{i} V^{\prime}+h^{i} V^{\prime \prime}$.

## 3. Proof of Theorem A

Our exposition of this proof follows Katz [3, Appendix].
Recall that we may spread out $X$ and $Y$ to schemes $f: \mathcal{X} \rightarrow$ Spec $R$ and $g: \mathcal{Y} \rightarrow \operatorname{Spec} R$ over a finitely generated characteristic zero ring $R$ such that $\# \mathcal{X}\left(\mathbf{F}_{\ell}\right)=\# \mathcal{Y}\left(\mathbf{F}_{\ell}\right)$ for all but finitely many closed points $\ell \in \operatorname{Spec} R$. By inverting an element of $R$ if needed, we may assume that each of the schemes $\mathcal{X}$ and $\mathcal{Y}$ is proper and smooth over $R$ and that $\# \mathcal{X}\left(\mathbf{F}_{\ell}\right)=\# \mathcal{Y}\left(\mathbf{F}_{\ell}\right)$ for all closed points $\ell \in \operatorname{Spec} R$.

Moreover, there is a prime $p$ such that $R$ can be mapped injectively into the ring of integers $O$ of a finite extension $K / \mathbf{Q}_{p}$. Fix such a prime $p$.

We will use Frobenius automorphisms at points $\ell$ away from $p$ to show that

$$
\begin{equation*}
H_{e t}^{k}\left(\mathcal{X}_{\bar{K}}, \mathbf{Q}_{p}\right)^{s s} \cong H_{e t}^{k}\left(\mathcal{Y}_{\bar{K}}, \mathbf{Q}_{p}\right)^{s s} \tag{7}
\end{equation*}
$$

as $G_{K}$-representations. Over $\operatorname{Spec} R[1 / p]$, the sheaves

$$
\begin{equation*}
R^{k} f_{*} \mathbf{Q}_{p} \quad \text { and } \quad R^{k} g_{*} \mathbf{Q}_{p} \tag{8}
\end{equation*}
$$

are lisse and pure of weight $k[2,(3.3 .9)]$. Pure of weight $k$ means that for any geometric point $\bar{\ell}$ with image $\ell \in \operatorname{Spec} R[1 / p]$, any eigenvalue of the geometric Frobenius automorphism $F_{\ell} \in G\left(\mathbf{F}_{\bar{\ell}} / \mathbf{F}_{\ell}\right)$ on either of the stalks $\left(R^{k} f_{*} \mathbf{Q}_{p}\right)_{\bar{\ell}}$ or $\left(R^{k} g_{*} \mathbf{Q}_{p}\right)_{\bar{\ell}}$ is an algebraic integer with complex absolute value ${\sqrt{\left|\mathbf{F}_{\ell}\right|}}^{k}$ for any field embedding $\overline{\mathbf{Q}_{p}} \rightarrow \mathbf{C}$.

By proper base change for cohomology we have isomorphisms of $G\left(\mathbf{F}_{\bar{\ell}} / \mathbf{F}_{\ell}\right)$-modules

$$
\begin{equation*}
\left(R^{k} f_{*} \mathbf{Q}_{p}\right)_{\bar{\ell}} \cong H^{k}\left(\mathcal{X}_{\overline{\mathbf{F}_{\ell}}}, \mathbf{Q}_{p}\right) \quad \text { and } \quad\left(R^{k} g_{*} \mathbf{Q}_{p}\right)_{\bar{\ell}} \cong H^{k}\left(\mathcal{Y}_{\overline{\mathbf{F}_{\ell}}}, \mathbf{Q}_{p}\right) . \tag{9}
\end{equation*}
$$

By the Grothendieck-Lefschetz trace formula, the automorphism $F_{\ell}$ has identical traces on the (virtual) $\pi_{1}(\operatorname{Spec} R[1 / p])$-representations

$$
\begin{equation*}
\sum_{k \geq 0}(-1)^{k} R^{k} f_{*} \mathbf{Q}_{p} \quad \text { and } \quad \sum_{k \geq 0}(-1)^{k} R^{k} g_{*} \mathbf{Q}_{p} \tag{10}
\end{equation*}
$$

By purity, we can separate by weight to see that $F_{\ell}$ has identical traces on each

$$
\begin{equation*}
R^{k} f_{*} \mathbf{Q}_{p} \quad \text { and } \quad R^{k} g_{*} \mathbf{Q}_{p} \tag{11}
\end{equation*}
$$

By the Chebotarev density theorem, the conjugacy classes of the Frobenius elements $\left[F_{\ell}\right]$ equidistribute in the measure space of conjugacy classes of $\pi_{1}(\operatorname{Spec} R[1 / p])$; in particular, they form a dense subset so these representations have the same character. Finite dimensional semisimple representations are determined by their characters so

$$
\begin{equation*}
\left(R^{k} f_{*} \mathbf{Q}_{p}\right)^{s s} \cong\left(R^{k} g_{*} \mathbf{Q}_{p}\right)^{s s} \quad \text { as } \pi_{1}(\operatorname{Spec} R[1 / p]) \text {-modules } \tag{12}
\end{equation*}
$$

Let $\bar{k}$ denote the geometric point corresponding to $R \rightarrow R[1 / p] \rightarrow K \rightarrow \bar{K}$. Another use of proper base change shows that

$$
\begin{equation*}
H_{e t}^{k}\left(\mathcal{X}_{\bar{K}}, \mathbf{Q}_{p}\right)^{s s} \cong\left(R^{k} f_{*} \mathbf{Q}_{p}\right)_{\bar{k}}^{s s} \cong\left(R^{k} g_{*} \mathbf{Q}_{p}\right)_{\bar{k}}^{s s} \cong H_{e t}^{k}\left(\mathcal{Y}_{\bar{K}}, \mathbf{Q}_{p}\right)^{s s} \quad \text { as } G_{K} \text {-modules } \tag{13}
\end{equation*}
$$

Hodge numbers don't change under semisimplification so $H_{e t}^{k}\left(\mathcal{X}_{\bar{K}}, \mathbf{Q}_{p}\right)$ and $H_{e t}^{k}\left(\mathcal{Y}_{\bar{K}}, \mathbf{Q}_{p}\right)$ have the same Hodge numbers as $G_{K}$-modules. By the Hodge-Tate decomposition at $p$ this means $\mathcal{X}_{K}$ and $\mathcal{Y}_{K}$ have the same Hodge numbers. ${ }^{3}$

Remark 1. The auxiliary prime $p$ in the proof can be chosen to be arbitrarily large, in particular larger than either the dimension of $X$ or $Y$ or the discriminant of the "algebraic part" of $R$, in which case one can use an earlier theorem of Fontaine-Messing rather than the general form of the Hodge-Tate decomposition stated here.

Remark 2. There is an example ${ }^{4}$ showing that equal point-counts for all finite fields of a single characteristic is not enough to determine Hodge numbers.

## 4. Example

Let $\mathbf{P}_{2}$ denote the projective plane and let $q$ be a prime. Let $X$ denote the result of blowing up $\mathbf{P}_{2}$ along the two points

$$
\begin{equation*}
(1: \sqrt{q}: 1) \cup(1:-\sqrt{q}: 1) . \tag{14}
\end{equation*}
$$

Let $\chi=(\underline{q})$ denote the quadratic character associated to $\mathbf{Q}(\sqrt{q})$. Let $p$ be another prime which is not 2 or $q$. If $\chi(p)=1$, then $X\left(\mathbf{F}_{p}\right)$ looks like
figure with two spirals
and has $p^{2}+3 p+1 \mathbf{F}_{p}$-points. If $\chi(p)=-1$, then $X\left(\mathbf{F}_{p}\right)$ looks like
figure with usual projective plane

[^0]and has $p^{2}+p+1 \mathbf{F}_{p}$-points. The cohomology of $X$ only differs from $\mathbf{P}_{2}$ in cohomological degree 2, where it becomes isomorphic to
\[

$$
\begin{equation*}
H^{2}\left(\mathbf{P}_{2}, \mathbf{Q}_{p}\right) \oplus H^{0}\left(\operatorname{Spec} \mathbf{Q}(\sqrt{q}), \mathbf{Q}_{p}\right)(-1)=\mathbf{Q}_{p}(-1) \oplus\left(\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}(\chi)\right)(-1) \tag{17}
\end{equation*}
$$

\]

Thus the nonzero $p$-adic cohomology groups are given by

$$
\begin{equation*}
H^{0}=\mathbf{Q}_{p}, \quad H^{2}=\mathbf{Q}_{p}(-1) \oplus\left(\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}(\chi)\right)(-1), \quad H^{4}=\mathbf{Q}_{p}(-2) \tag{18}
\end{equation*}
$$

as $G_{\mathbf{Q}_{p}}$-modules.
We see the second Betti number went up by two since we blew up two points, and as a Galois representation the "new" piece is $H^{0}\left(\operatorname{Spec} \mathbf{Q}(\sqrt{q}), \mathbf{Q}_{p}\right)(-1)=\left(\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}(\chi)\right)(-1)$.

What about the Hodge-Tate decomposition? We claim that $\mathbf{Q}_{p}(\chi) \otimes \mathbf{C}_{p} \cong \mathbf{C}_{p}$ as $G_{\mathbf{Q}_{p}}{ }^{-}$ modules where $G_{\mathbf{Q}_{p}}$ acts diagonally on the left and in the usual manner on the right. Let $g_{\chi}=\sum_{k \in \mathbf{F}_{p}} \chi(k) e^{2 \pi i k / p}$ be the Gauss sum of $\chi$ at $p$. The Gauss sum is a nonzero algebraic integer with the property that for any $\sigma \in G_{\mathbf{Q}_{p}}$,

$$
\begin{equation*}
\sigma g_{\chi}=\chi(\sigma)^{-1} g_{\chi} \tag{19}
\end{equation*}
$$

Now consider the map

$$
\begin{align*}
\mathbf{Q}_{p}(\chi) \otimes \mathbf{C}_{p} & \rightarrow \mathbf{C}_{p}  \tag{20}\\
a \otimes x & \mapsto a x g_{\chi^{-1}} . \tag{21}
\end{align*}
$$

This is clearly an isomorphism of groups and for any $\sigma \in G_{\mathbf{Q}_{p}}$ we have

$$
\begin{equation*}
\sigma(a \otimes x)=\chi(\sigma) a \otimes \sigma(x) \mapsto \chi(\sigma) a \sigma(x) g_{\chi}=\sigma\left(a x g_{\chi}\right) \tag{22}
\end{equation*}
$$

so this is an isomorphism of $G_{K}$-modules which has "ironed out" the interesting arithmetic part of the $p$-adic cohomology of $X$.

The Hodge-Tate decomposition for the middle-degree cohomology is

$$
\begin{equation*}
H^{2} \otimes \mathbf{C}_{p}=\mathbf{C}_{p}(-2)^{\oplus 0} \oplus \mathbf{C}_{p}(-1)^{\oplus 3} \oplus \mathbf{C}_{p}(0)^{\oplus 0} \tag{23}
\end{equation*}
$$

which gives the correct Hodge numbers.

Remark 3. Note the difference between $\chi$ and the $p$-adic cyclotomic character. By Tate's computation for $\mathbf{C}_{p}(1)^{G_{K}}$, there is no nonzero "Gauss sum" $g \in \mathbf{C}_{p}(1)^{G_{K}}$ for the $p$-adic cyclotomic character.

## 5. Proof of Theorem B

Our exposition of $p$-adic integration and Weil's theorem follows [5, Ch. 3].
$p$-adic integration. Let $O$ be the ring of integers in $K$ with residue field $\mathbf{F}$ of cardinality $q$. Let $\mathcal{X}$ be a smooth scheme over $O$ of relative dimension $d .{ }^{5}$ We need not assume $\mathcal{X}$ is proper. Since $\mathcal{X}$ is smooth, $\mathcal{X}(K)$ naturally has the structure of a " $p$-adic manifold", i.e. any point has an open neighborhood which is homeomorphic to $O^{d}$. The analytic structure on $O^{d}$ carries over to $\mathcal{X}(K)$ in the usual way, giving us sheaves of analytic functions and differential forms on $\mathcal{X}(K)$.

In one respect the situation is better than for real manifolds. For one there is a canonical open compact submanifold $\mathcal{X}(O) \subset \mathcal{X}(K)$. Now consider a bianalytic map $F: O^{d} \rightarrow O^{d}$. Since

$$
\begin{equation*}
\operatorname{Jac}\left(F \circ F^{-1}\right)=1=\operatorname{Jac}(F) \operatorname{Jac}\left(F^{-1}\right) \tag{24}
\end{equation*}
$$

its Jacobian is valued in $O^{\times}$, i.e. $|\operatorname{Jac}(F)|=1$ for a change of variables $F$. This will imply the existence of a canonical measure on the canonical compact submanifold $\mathcal{X}(O)$.

The first step is to assign measures to $d$-forms. Let $U \subset \mathcal{X}(K)$ be an open subset equipped with a chart $\varphi: U \xrightarrow{\sim} O^{d}$. If $\omega$ is a regular $d$-form on $U$ then

$$
\begin{equation*}
\omega \circ \varphi^{-1}=g(x) d x_{1} \wedge \cdots \wedge d x_{d} \tag{25}
\end{equation*}
$$

for an analytic function $g$ on $U$, and we define

$$
\begin{equation*}
\int_{U}|\omega|:=\int_{O^{d}}\left|\omega \circ \varphi^{-1}\right|=\int_{O^{d}}|g(x)| d \mu_{\text {Haar }} \tag{26}
\end{equation*}
$$

where $\mu_{\text {Haar }}$ is the normalized Haar measure on $O^{d}$. This integral is independent of the choice of $\varphi$ since $\left|\operatorname{Jac}\left(\varphi^{\prime} \circ \varphi^{-1}\right)\right|=1$ for another chart $\varphi^{\prime}$. These local measures glue to form a measure $\mu_{\omega}$ on $\mathcal{X}(K)$ which only depends on $\omega$. We have proven that:

Any regular d-form $\omega$ on $\mathcal{X}(K)$ induces a Borel measure $\mu_{\omega}$ on $\mathcal{X}(K)$ where the measure of an analytic function $f$ on a compact open subset $U$ is

$$
\begin{equation*}
\int_{U}|f| d \mu_{\omega}:=\int_{U}|f \omega| . \tag{27}
\end{equation*}
$$

A canonical p-adic measure. Now we use these measures to construct a canonical measure on $\mathcal{X}(O)$. The idea is to locally trivialize $\Omega_{\mathcal{X} / O}^{d}$ (not just $\Omega_{\mathcal{X}_{K} / K}^{d}$ !) and glue the resulting measures over $\mathcal{X}(O)$.

Theorem 5.1 (Weil [8]).
(1) There is a canonical Borel measure $\mu_{\text {can }}$ on $\mathcal{X}(O)$ with the property that for any Zariski open subset $\mathcal{Y} \subset \mathcal{X}$ and any regular nonvanishing d-form $\omega$ on $\mathcal{Y} / O$, $\mu_{\text {can }}$ and $\mu_{\omega}$ agree for any analytic function $f$ on a compact open subset $U \subset \mathcal{Y}(O)$.

[^1](2) The canonical measure of $\mathcal{X}(O)$ is
\[

$$
\begin{equation*}
\mu_{\mathrm{can}}(\mathcal{X}(O))=\frac{|\mathcal{X}(\mathbf{F})|}{q^{d}} \tag{28}
\end{equation*}
$$

\]

Trivializing $\Omega_{\mathcal{X} / O}^{d}$ over a Zariski open $\mathcal{Y} \subset \mathcal{X}$ means finding a $d$-form $\omega$ which is nonvanishing on $\mathcal{Y} / O$. In particular, the restriction of $\omega$ to the special fiber of $\mathcal{Y}$ must be nonvanishing, so locally on $\mathcal{Y}(O)$ the form $\omega$ looks like

$$
\begin{equation*}
g(y) d y_{1} \wedge \cdots \wedge d y_{d} \tag{29}
\end{equation*}
$$

where $|g(y)|=1$. (Although $g$ depends on the choice of chart the condition $|g|=1$ does not by the change of variables formula.)

Proof. Cover $\mathcal{X}$ by Zariski open subsets which are small enough to trivialize the canonical bundle $\Omega_{\mathcal{X} / O}^{d}$. Let $\mathcal{Y} \subset \mathcal{X}$ be an open subset in the cover and let $\omega$ be a nonvanishing $d$-form on $\mathcal{Y} / O$. By the construction above we have the Borel measure $\mu_{\mathcal{Y}, \omega}$ on $\mathcal{Y}(K)$. If $\omega^{\prime}$ is another nonvanishing $d$-form on $\mathcal{Y} / O$, then $\mu_{\mathcal{Y}, \omega^{\prime}}=\mu_{\mathcal{Y}, \omega}$ on $\mathcal{Y}(O)$ since $\frac{\omega^{\prime}}{\omega}$ is $O^{\times}$valued on $\mathcal{Y}(O)$. Thus we get a canonical measure $\mu_{\mathcal{Y} \text {, can }}$ on $\mathcal{Y}(O)$. For the same reason, these canonical measures $\mu_{\mathcal{Y} \text {,can }}$ agree on overlaps of Zariski open subsets in the trivializing cover, so they glue to a canonical measure $\mu_{\text {can }}$ on $\mathcal{X}(O)=\cup_{\mathcal{Y}} \mathcal{Y}(O)$ which will satisfy (1) by construction.

To compute (2), a generalization of Hensel's lemma implies that any set-theoretic section of the reduction map $r: \mathcal{X}(O) \rightarrow \mathcal{X}(\mathbf{F})$ induces a homeomorphism

$$
\begin{equation*}
\mathcal{X}(O) \cong \mathcal{X}(\mathbf{F}) \times \mathfrak{m}^{d} \tag{30}
\end{equation*}
$$

This homeomorphism identifies $\mu_{\omega}$ on the left with the product of counting measure on $\mathcal{X}(\mathbf{F})$ and Haar measure on the right. Thus for any $x_{0} \in \mathcal{X}(\mathbf{F})$ we have

$$
\begin{equation*}
\mu_{\mathcal{X}, \omega}\left(r^{-1}\left(x_{0}\right)\right)=\int_{\left\{x_{0}\right\} \times \mathfrak{m}^{d}}\left|g(x) d x_{1} \wedge \cdots \wedge d x_{d}\right|=\mu_{\text {Haar }}\left(\left\{x_{0}\right\} \times \mathfrak{m}^{d}\right)=q^{-d} \tag{31}
\end{equation*}
$$

By (1) this is also $\mu_{\text {can }}\left(r^{-1}\left(x_{0}\right)\right)$. Summing over $x_{0} \in \mathcal{X}(\mathbf{F})$ proves the formula.

Proof of Theorem B. Spread out to smooth proper schemes $\mathcal{X}$ and $\mathcal{Y}$ of a fixed relative dimension over a finitely generated characteristic zero ring $R$.For all but finitely many closed points $\ell \in \operatorname{Spec} R$ there is an embedding $R \rightarrow O=W\left(\mathbf{F}_{\ell}\right)$ such that $\mathcal{X} / O$ and $\mathcal{Y} / O$ have trivial canonical bundles.

Consider the diagram

where $b$ is a birational equivalence, $\mathcal{Z}$ is a resolution of singularities of the Zariski closure of the graph $\Gamma_{b} \subset X \times Y$ of $b$, and $\psi$ and $\phi$ are the compositions with the projection maps. Since both canonical bundles are trivial,

$$
\begin{equation*}
\psi^{*} \Omega_{\mathcal{X} / O}^{d} \cong \phi^{*} \Omega_{\mathcal{Y} / O}^{d} \tag{33}
\end{equation*}
$$

(we say $\mathcal{X}$ and $\mathcal{Y}$ are $K$-equivalent). In other words, there are nonvanishing $d$-forms $\omega_{\mathcal{X}}$ and $\omega y$ such that

$$
\begin{equation*}
\psi^{*} \omega_{\mathcal{X}}=\psi^{*} \omega_{\mathcal{Y}} \tag{34}
\end{equation*}
$$

Since $\mu_{\omega_{\mathcal{X}}}=\mu_{\text {can }}$ for a nonvanishing $d$-form by construction,

$$
\begin{equation*}
\mu_{\mathcal{X}, \operatorname{can}}(\mathcal{X}(O))=\mu_{\mathcal{Z}, \psi^{*} \omega_{\mathcal{X}}}(\mathcal{Z}(O))=\mu_{\mathcal{Y}, \operatorname{can}}(\mathcal{Y}(O)) \tag{35}
\end{equation*}
$$

This proves that $\# \mathcal{X}(\mathbf{F})=\# \mathcal{Y}(\mathbf{F})$ by Weil's formula.
Remark 4. The proof shows that $K$-equivalent smooth projective varieties have the same point counts over almost all finite fields, so the restriction to birational Calabi-Yau varieties is not really the natural context for this application of $p$-adic Hodge theory. In fact Wang [7] has conjectured that $K$-equivalent smooth projective complex varieties have isomorphic Chow motives, which would give a natural explanation for several of the results we have discussed.

## References

[1] V. V. Batyrev. Birational Calabi-Yau $n$-folds have equal Betti numbers, 1998.
[2] P. Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137-252, 1980.
[3] T. Hausel and F. Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz. Invent. Math., 174(3):555-624, 2008.
[4] T. Ito. Birational smooth minimal models have equal Hodge numbers in all dimensions, 2002.
[5] M. Popa. Modern aspects of the cohomological study of varieties (lecture notes), 2011.
[6] J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158-183. Springer, Berlin-New York, 1967.
[7] C.-L. Wang. K-equivalence in Birational Geometry, 2002.
[8] A. Weil. Adèles and algebraic groups. Sém. Bourbaki 11(1958/59), Exp. No. 186, 9 p. (1959)., 1959.


[^0]:    ${ }^{3}$ Note that choosing a different embedding $R \rightarrow \mathbf{C}$ will not alter the Hodge numbers (though it will change the associated periods).
    ${ }^{4}$ https://mathoverflow.net/questions/92958

[^1]:    ${ }^{5}$ We say $X \rightarrow S$ is smooth of relative dimension $d$ if $X \rightarrow S$ is smooth and all non-empty fibers are equi-dimensional of dimension $d$.

