
Fourier analytic aspects of Bhargava’s proof
of van der Waerden’s conjecture

ANDREW O’DESKY

Our aim in this talk is to explain Bhargava’s proof of van der Waerden’s con-
jecture, with particular attention given to the Fourier analytic aspects of the
proof.

Notation: Let G ⊂ Sn be a permutation group. Let E(H) = E(G,H) denote
the number of monic integer polynomials of degree n with height ≤ H and Galois
group G. Let V denote the affine space of monic degree n polynomials.

0.1. van der Waerden’s conjecture. Van der Waerden conjectured that E(H) =
O(Hn−1) if G 6= Sn. Thanks to earlier work of van der Waerden and Widmer,
the remaining case to prove is when G is primitive. If G is primitive and 6= Sn,
then its index is ≥ 2 (defined as ming 6=1(n−#orb(g))).

0.2. Polynomials with index at least k. Certain subschemes of V which refine
the discriminant locus of V play an important role in the proof. A splitting type σ
is an unordered tuple of pairs of integers (fi, ei) written (f e1

1 · · · f er
r ). The degree

of σ is
∑

i fiei and its index is
∑

i fi(ei − 1). The index of a polynomial is the
index of the splitting type defined by its irreducible factorization. The index of a
polynomial is stable under separable field extensions. For any k ≥ 1 let Vk ⊂ V
denote the closed subscheme parametrizing polynomials with index at least k.
For example, V1 is the discriminant locus.

Write f((p)) for the image of f in V (Fp).

Proposition 0.1. If f ∈ V (Z) has Galois group G, then f((p)) ∈ Vind(G) for
each prime p which is ramified in the root field Kf of f .

Proof: (p odd, index 2). The action of inertia Ip on the set of complex embed-
dings of Kf can be used to show that vp(Df ) ≥ ind(G), so vp(disc(f)) ≥ vp(Df ) ≥
ind(G) ≥ 2. If f has index one modulo p then f = gq over Qp where the reduc-
tions of g and q modulo p are coprime, the reduction of g modulo p is squarefree,
and q is quadratic and Eisenstein. But this would imply that p ramifies with
degree two in Kf . Assuming p is odd this is tame so vp(Df ) = ep − 1 = 1, a
contradiction. As p is ramified f cannot have index zero modulo p, so the index
is at least two. �
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This proposition forms the basis for a sieve-type argument. Even though there
are only finitely many local conditions (one for each ramified prime) and the local
conditions depend on the point, these are strong local conditions since they are
restriction to a codimension-k subset of the mod p fiber where k = ind(G) ≥ 2.
(We are counting a “mod Cf Type I thin set”.)

0.3. Up to an epsilon. Without Fourier analysis we can prove that E(H) =
Oε(H

n−1+ε) as follows.
Let Esm(H) be the number of f in E(H) such that the product C of ramified

primes in the root field Kf of f (without multiplicity) is ≤ H, and let Ebig(H) =

E(H) − Esm(H). Let C = p1 · · · pr and let D = pk11 · · · pkrr for some positive
integers k1, . . . , kr. The fraction of polynomials in V (Fp) with index k is O(p−k)
(see the proof of Prop. 0.2 for justification), so by the Chinese remainder theorem
the fraction of polynomials in V (Z/CZ) whose reduction modulo pi has index ki
for each pi is O(cω(C)/D) for some constant c > 0. If C ≤ H, then the number
of polynomials in V (Z) with height ≤ H whose reduction modulo pi has index ki
for each pi is O(Hncω(C)/D).

The form of this upper bound suggests forming a tail estimate for large D. By
the proposition, the discriminant Df of Kf is k-power-full, which gives

#{f ∈ Esm(H) : Df > H2} =
∑

D>H2 k-power-full

O(Hncω(C)/D)

= O(Hncω(C))(H2)−(k−1)/k = Oε(H
n−2(k−1)/k+ε)

by partial summation (integration by parts). Namely, #{D ≤ X k-power-full} ∼
X1/k so by partial summation∑

Y <D≤X k-power-full

D−s = O(X1/k−s) +O(Y 1/k−s) +

∫ X

Y

O(Z1/k−s−1) dZ

X→∞,s=1−−−−−−→ O(Y −(k−1)/k).

For those f ∈ Esm(H) with Df < H2 we appeal to two known bounds: the
number of Kf with discriminant ≤ X is at most O(X(n+2)/4) by a result of
Schmidt, and the number of f of height ≤ H for a given K = Kf is at most
Oε(H

1+ε) by a result of Lemke-Oliver–Thorne. So the number of f ∈ Esm(H)
with Df < H2 is at most O((H2)(n+2)/4)Oε(H

1+ε). This has exponent n/2+2+ε
which is n − 1 + ε for n = 6 and < n − 1 for n ≥ 7. For n ≤ 5 the number
of Kf with discriminant ≤ X is known to be ∼ cX and for such n one gets
O(H2)Oε(H

1+ε). This works for n = 4, 5, Chow–Dietmann have shown it for
n = 3, while n = 2 is trivial. This shows Esm(H) = Oε(H

n−1+ε) for all n.
Now we turn to Ebig(H) (recall this counts f with C > H). The key is the

following observation, which can be proven by a clever elementary argument. If
we specify the first r coefficients a1, . . . , ar of f in any field with characteristic
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> n, then there are at most r! many choices for ar+1, . . . , an such that f has
index k = n − r. In other words, the restriction of the projection map V → Ar

to Vk is quasi-finite away from primes dividing n, with uniformly bounded fiber
cardinalities.

Say Vk is contained in the vanishing set of polynomials g1, . . . , gk. Using succes-
sive resultants we can assume that g1 only involves the variables a1, . . . , an−k+1.
Fix coefficients a1, . . . , an−k+1 ∈ [−H,H]. We claim that for almost all such
choices, the rest of the coefficients of f are determined up to Oε(H

ε) many choices.
First observe there are at most O(Hn−k) choices for these coefficients such that
g1(f) = g1(a1, . . . , an−k+1) = 0. So assume g1(f) 6= 0 in which case it still van-
ishes modulo C. There are Oε(H

ε) many divisors of g1(f) so C is determined up
to Oε(H

ε) many possibilities. Once C is determined, then for any prime p divid-
ing C and greater than n, there are only O(1) many choices for an−k+2, . . . , an
modulo p which obtain a polynomial f ∈ Vk(Fp), so f is determined modulo C
up to Oε(H

ε) by the Chinese remainder theorem. Since C > H this actually
determines f . The number of choices modulo primes less than n is bounded also,
so in total there are Oε(H

n−k+1+ε) many choices for f .

Remark 1. The polynomial g1(a1, . . . , an−1) for k = 2 was precisely the “double
discriminant” DD(f) = DD(a1, . . . , an−1).

Remark 2. More generally, the proof shows that a subset W ⊂ Zn has at most
Oε(H

n−k+1+ε) many elements in [−H,H] if there is a hypersurface H ⊂ An−k+1

with the property that for every f ∈ W there is a positive integer C > H such
that f((p)) ∈ H × Ak−1 for all p dividing C.

So we’ve shown that Esm(H) = Oε(H
n−1+ε) and Ebig(H) = Oε(H

n−k+1+ε).
Remember that this division was made on the basis of whether C ≤ H. The
Fourier analysis shows that in fact Esm(H) = O(Hn−1−µ) for some µ > 0; equiv-
alently, we can redefine the division between Esm and Ebig to C ≤ H1+δ and
show that we have the same bound Esm(H) = Oε(H

n−1+ε).

0.4. The proof. Our goal is to prove that the bound
O(cω(C)Hn/D)

still holds even if C is as large as H1+δ for some positive δ.
Fix a prime p and a splitting type σ of degree n and index k.

Proposition 0.2. Let 1σ denote the characteristic function on the subset of poly-
nomials in V (Fp) with type σ. Then for some positive constant cσ,

1̂σ(g) =

{
cσp

−k +O(p−(k+1)) if g = 0,
O(p−(k+1/2)) if g 6= 0.
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Proof. First we evaluate the number of polynomials in V (Fp) of type σ. Observe
there is a surjective function (write σ = (f e1

1 · · · f er
r ))

r∏
i=1

{gi ∈ Fp[x] monic irred. of degree fi} → {f ∈ Fp[x] : σ(f) = σ}

(g1, . . . , gr) 7→ ge11 · · · gerr
whose fibers have cardinalities that are bounded independently of p (e.g. ≤ r!).
Since #{g irred. of degree f} = 1

f
pf +O(pf−1), this gives

#{f ∈ Fp[x] : σ(f) = σ} =
r∏

i=1

( 1
fi
pfi +O(pfi−1)) = cσp

n−k +O(pn−(k+1)).

This proves the formula for 1̂σ(0), which is p−n times this quantity.
Now suppose g 6= 0. We have that

1̂σ(g) =
1

pn

∑
f :σ(f)=σ

ψ(f, g).

The key observation is that any translation f(x + c) with c ∈ Fp has the same
splitting type as f(x), and that grouping summands according to these additive
orbits leads to exponential sums of “Weil-type”. It is easy to show that if m is
the largest index such that g(xn−m) 6= 0 then g(f(x+ c)) is equal to

cmg(xn−mym)

(
n

n−m

)
+O(cm−1)

and is therefore a nonzero degree m polynomial in c if g 6= 0. A special case of an
inequality of Weil (following from the Riemann hypothesis for curves over finite
fields) says that for any non-constant polynomial Q ∈ Fp[c] we have∣∣∣∣∑

c∈Fp

ψ(Q(c))

∣∣∣∣ ≤ (degQ− 1)
√
p.

Thus

1̂σ(g) =
1

pn

∑
[f ]

∑
c∈Fp

ψ(f(x+ c), g) =
1

pn

∑
[f ]

(m− 1)
√
p = O(p−npn−k−1p1/2)

= O(p−(k+1/2)).

�

Remark 3. Bhargava also considers a characteristic function wσ with positive
weights for σ of degree less than n. He shows that ŵσ(g) = O(p−(k+1)) for g 6= 0,
but this more general context is not needed for the proof of van der Waerden’s
conjecture for monic polynomials.
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Corollary 0.3. Let 0 < δ < 1/(2n − 1). Let D = pk11 · · · pkmm be an integer such
that C = p1 · · · pm < H1+δ. Then the number of f ∈ V (Z) of height ≤ H that,
modulo pi, have index at least ki for every i is at most O(cω(C)Hn/D).

Proof. Recall the twisted Poisson formula:∑
f∈V (Z)

Ψ(f (mod C))φ(f/H) = Hn
∑

g∈V (Z)∨
Ψ̂(g (mod C))φ̂(gH/C)

where φ is a Schwartz function on V (R), φ̂ is the Fourier transform of φ, and
Ψ: V (Z/CZ) → C is any set-theoretic function.

We will apply this with

Ψ(f (mod C)) =
m∏
i=1

1Vki
(f (mod pi)) =

m∏
i=1

∑
σ:ind(σ)≥ki

1σ(f (mod pi))

and φ with compact support and identically one on [−1, 1]n ⊂ V (R). First
observe that

Ψ̂(g (mod C)) =
r∏

i=1

1̂Vki
(g (mod pi))

(for Fourier transforms modulo pi with respect to suitably chosen additive char-
acters). Then∑

f∈V (Z)

Ψ(f (mod C))φ(f/H)

= Hn

(
m∏
i=1

O(p−ki)

)
φ̂(0) +Hn

(
m∏
i=1

O(p−(ki+1/2))

) ∑
0 6=g∈V (Z)∨

|φ̂(gH/C)|. (1)

The first term gives the dominant term O(Hncω(C)/D).
To bound the second term we collect the summands for which gH/C lies in a

box B(ε) of sidelength Cε (for any ε > 0). For the summands outside the box,
and any positive integer N , we have that∑

gH/C 6∈B(ε)

|φ̂(gH/C)| ≤
∑

gH/C 6∈B(ε)

(gH/C)−N

since φ̂ is Schwartz. Since ||gH/C|| > Cε > 1, by choosing N �ε,n 1 we can
arrange that this term is absorbed into the dominant term. Inside the box, there
are at most (Cε)n(C/H)n many 0 6= g ∈ V (Z)∨ such that gH/C ∈ B(ε). Now
it may be the case that g can vanish modulo primes dividing C, in which case
the worse bound on Fourier coefficients must be used, but for simplicity let’s say
C = p. Then this doesn’t occur (since 0 6= ||g|| ≤ C1+ε/H < C) so the second
term of (1) is at most

Hn ·O(cω(C)/(D
√
C)) ·Oε(C

ε(C/H)n) = Oε(C
n−1/2+ε/D).
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(If C is composite there is a bit more work to take care of the primes dividing C
where g reduces to zero but one gets the same bound in the end.)

Altogether, (1) shows that the number of f ∈ V (Z) of height ≤ H any
that, modulo pi, have index at least ki for every i is at most O(cω(C)Hn/D) +
Oε(C

n−1/2+ε/D). The hypothesis that C < H1+δ is optimally chosen so that the
second term is smaller than the first. �


